ASE PROGRAM CERTIFICATION STANDARDS

FOR

AUTOMOBILE TECHNICIAN TRAINING PROGRAMS

Administered By:

National Automotive Technicians Education Foundation (NATEF)
101 Blue Seal Drive, S.E.
Suite 101
Leesburg, VA 20175
(703) 669-6650
www.natef.org

©2005
TABLE OF CONTENTS

Policies
- Automobile Technician Training Certification Program .. 1
- Light/Medium Duty CNG/LPG Certification (optional) .. 2
- Certification Process .. 3
- Automobile Standards Statements ... 4
- Automobile Minimum Requirements ... 5
- Information about Evaluation Team Leaders (ETLs) ... 7
- Information about On-Site Evaluation Team Members ... 8
- Task List Information ... 9
- Tools and Equipment Information .. 10
- Automobile Program Evaluation ... 11
- NATEF Policies on Articulation Agreements ... 12
- Recognition for Certification ... 14
- Applied Academics Recognition .. 15
- Appeals and Action for Revocation .. 16
- Definitions – Educational Terms ... 18

Procedures
- Process Overview ... 21
- On-Site Evaluation Cost Sheet ... 25

Program Standards
- Standard 1 - Purpose .. 27
- Standard 2 - Administration .. 27
- Standard 3 - Learning Resources ... 28
- Standard 4 - Finances .. 29
- Standard 5 - Student Services ... 29
- Standard 6 - Instruction .. 30
- Standard 7 - Equipment .. 33
- Standard 8 - Facilities .. 34
- Standard 9 - Instructional Staff .. 35
- Standard 10 - Cooperative Agreements .. 35

Task List
- Task List and Assumptions ... 37
- Definitions – Technical Terms .. 39
- NATEF Task List .. 42
 - Engine Repair .. 42
 - Automatic Transmission and Transaxle .. 46
 - Manual Drive Train and Axles .. 50
 - Suspension and Steering .. 55
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brakes</td>
<td>60</td>
</tr>
<tr>
<td>Electrical/Electronic Systems</td>
<td>64</td>
</tr>
<tr>
<td>Heating and Air Conditioning</td>
<td>69</td>
</tr>
<tr>
<td>Engine Performance</td>
<td>73</td>
</tr>
<tr>
<td>Task List Priority Item Totals (by area)</td>
<td>79</td>
</tr>
<tr>
<td>Applied Academics and Workplace Skills</td>
<td>81</td>
</tr>
<tr>
<td>Language Arts & Communications</td>
<td>82</td>
</tr>
<tr>
<td>Mathematics</td>
<td>84</td>
</tr>
<tr>
<td>Science</td>
<td>87</td>
</tr>
<tr>
<td>Workplace Skills</td>
<td>93</td>
</tr>
</tbody>
</table>

Tools and Equipment

<table>
<thead>
<tr>
<th>Tools and Equipment</th>
<th>97</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hand Tools</td>
<td>98</td>
</tr>
<tr>
<td>General Lab/Shop Equipment</td>
<td>101</td>
</tr>
<tr>
<td>Specialty Tools and Equipment</td>
<td>103</td>
</tr>
<tr>
<td>Suspension and Steering</td>
<td>103</td>
</tr>
<tr>
<td>Brakes</td>
<td>103</td>
</tr>
<tr>
<td>Heating and Air Conditioning</td>
<td>104</td>
</tr>
<tr>
<td>Engine Performance</td>
<td>104</td>
</tr>
<tr>
<td>Automatic Transmission/Transaxle</td>
<td>104</td>
</tr>
<tr>
<td>Electrical/Electronic Systems</td>
<td>105</td>
</tr>
<tr>
<td>Manual Drive Train and Axles</td>
<td>105</td>
</tr>
<tr>
<td>Engine Repair</td>
<td>105</td>
</tr>
</tbody>
</table>
POLICIES

AUTOMOBILE TECHNICIAN TRAINING CERTIFICATION PROGRAM

The Board of the National Institute for Automotive Service Excellence (ASE) is the body responsible for the Automobile Technician Training Certification Program. ASE will grant certification to programs that comply with the evaluation procedure, meet established standards, and adhere to the policies in this document.

The Certification Program is under the direct supervision of the Board of Trustees of the National Automotive Technicians Education Foundation (NATEF) and such personnel designated or employed by the Foundation.

The purpose of the Automobile Technician Training Certification Program is to improve the quality of training offered at the secondary and post-secondary levels. NATEF does not endorse specific curricular materials nor provide instruction to individuals, groups or institutions. It does, however, set standards for the content of instruction, which includes tasks, tools and equipment, hours, and instructor qualifications.

The Program is a certification program only and is not associated with the accreditation role of other agencies.

The cost to each program for certification will be as reasonable as possible to encourage program participation. This cost will include self-evaluation materials, application (processing) fee, on-site team evaluation materials, and the honorarium and expenses of the Evaluation Team Leader (ETL).

The eight Automobile areas that may be certified are:

1. Brakes
2. Electrical/Electronic Systems
3. Engine Performance
4. Suspension and Steering
5. Automatic Transmission and Transaxle
6. Engine Repair
7. Heating and Air Conditioning
8. Manual Drive Train and Axles

Four areas are required for minimum certification or recertification: Brakes, Electrical/Electronic Systems, Engine Performance, and Suspension & Steering.

In the event that a program is not able to certify in the four required areas or more, options exist to certify as an articulated program. For information on articulated certification, see page 12.
OPTIONAL
LIGHT/MEDIUM DUTY CNG/LPG
(*Order Light/Medium Duty CNG/LPG Materials for Details*)

The Light/Medium Duty Compressed Natural Gas (CNG) and Liquefied Petroleum Gas (LPG) certification areas are optional – supplemental – areas to the existing ASE/NATEF Automobile Program. “Certified Master Automobile Program” certification is not affected by the addition of these alternative fuel areas. Certification in Light/Medium Duty CNG/LPG is dependent on a program meeting the minimum program requirements for certification for Automobile, as well as those requirements specified in the Light/Medium Duty CNG/LPG certification manual.

Programs seeking Light/Medium Duty CNG/LPG certification must order the separate Light/Medium Duty CNG/LPG certification materials

Optional Areas for Program Certification and Hours Required
Programs seeking Light/Medium Duty CNG/LPG certification must have their automobile program certified in at least the four required automobile areas or must certify in Electrical/Electronic Systems (area 2) and Engine Performance (area 3) and articulate with another program for Brakes (area 1) and Suspension & Steering (area 4).

Programs may certify for LPG only, CNG only, or both CNG and LPG. Areas 2, 3, 9, and 10 are required for minimum certification of LPG programs. Areas 2, 3, 12, and 13 are required for minimum certification of CNG programs.

9. LPG Diagnosis and Repair
10. LPG Maintenance
11. LPG Conversion/Installation
12. CNG Diagnosis and Repair
13. CNG Maintenance
14. CNG Conversion/Installation
CERTIFICATION PROCESS

Program Self Evaluation

The certification process begins with an extensive self-evaluation performed by training program instructors, administrators, and advisory committee members. Members of this group compare the program to national standards, and have the opportunity to make improvements before submitting evaluation documents to NATEF.

NATEF Review

Self-evaluation materials are then sent to NATEF, where they are reviewed to determine if the program qualifies for an on-site team evaluation.

On-Site Evaluation

If the program qualifies, an Evaluation Team Leader (ETL), an educator certified by ASE and trained by NATEF, is assigned to the program and an on-site visit is conducted.

Recommendation for Certification

When industry requirements are met, the program will become certified for a period of five years.

Programs will have a maximum of 18 months to complete the certification process from the date that their Application for Certification or Application for Recertification is received by the NATEF office.

Any ASE certified program that has let their certification lapse for two or more years will be required to follow the procedures for initial certification when they apply for renewal of their certification. Please note: A program must complete the entire recertification process within the two-year window.

Programs having difficulty in meeting the hours or tools & equipment certification requirements should consider the following options:

A) Initiating an Articulation Agreement with another secondary or post-secondary training institution (see NATEF Policies on Articulation Agreements).
B) Borrowing equipment needed for instruction from a manufacturer, dealership or independent repair shop.
C) Arranging for instruction on tasks requiring equipment not available in the school program at a dealership or independent repair shop.

Programs choosing option B or C are required to show documentation on where the tasks are taught, by whom, and how students are evaluated.
AUTOMOBILE STANDARDS STATEMENTS

STANDARD 1 – PURPOSE

The automobile technician training program should have clearly stated program goals, related to the needs of the students and employers served.

STANDARD 2 – ADMINISTRATION

Program administration should ensure that instructional activities support and promote the goals of the program.

STANDARD 3 – LEARNING RESOURCES

Support material, consistent with both program goals and performance objectives, should be available to staff and students.

STANDARD 4 – FINANCES

Funding should be provided to meet the program goals and performance objectives.

STANDARD 5 – STUDENT SERVICES

Systematic skills assessment, interviews, counseling services, placement, and follow-up procedures should be used.

STANDARD 6 – INSTRUCTION

Instruction must be systematic and reflect program goals. A task list and specific performance objectives with criterion referenced measures must be used.

STANDARD 7 – EQUIPMENT

Equipment and tools used must be of the type and quality found in the repair industry and must also be the type needed to provide training to meet the program goals and performance objectives.

STANDARD 8 – FACILITIES

The physical facilities must be adequate to permit achievement of the program goals and performance objectives.

STANDARD 9 – INSTRUCTIONAL STAFF

The instructional staff must have technical competency and meet all state and local requirements for certification.

STANDARD 10 – COOPERATIVE AGREEMENTS

Written policies and procedures should be used for cooperative and apprenticeship training programs. (This applies only to programs that offer cooperative/apprenticeship training.)
AUTOMOBILE MINIMUM REQUIREMENTS

1. The minimum program requirements are identical for initial certification and for recertification.

2. A program providing instruction in all of the automobile areas must have a minimum total of 1,080 hours of combined laboratory/shop (co-op) and classroom instruction. Tasks related to the eight automobile areas may be taught at different times during the course of study. Therefore, the hours for an individual area are the sum total of all the hours of instruction related to the tasks. Individual areas must have the following minimum hours:

 a. Brakes 105
 b. Electrical/Electronic Systems 230
 c. Engine Performance 220
 d. Suspension & Steering 95
 e. Automatic Transmission & Transaxle 120
 f. Engine Repair 120
 g. Heating & Air Conditioning 90
 h. Manual Drive Train & Axles 100

 TOTAL HOURS 1,080

3. All eight areas are required for master certification designation.

4. The average rating on each of Standards 6, 7, 8, and 9 must be a four on the five-point scale. The program will not be approved for an on-site evaluation if the average is less than 4 on any of those standards. The program should make improvements before submitting the application to NATEF for review. A program will be denied certification if the on-site evaluation team average on Standards 6, 7, 8, or 9 is less than four.

5. A program may not be approved for an on-site evaluation if the average rating on Standards 1-5 and 10 is less than a four on the five-point scale. A program may be denied certification if the on-site evaluation team average on Standards 1 - 5 and 10 is less than four. Approval for on-site evaluation or certification will be made by NATEF, based on the number of standards rated at 4 or 5 as well as the individual rating on any standard rated less than four.
6. All instructors must hold current ASE certification in the automobile area(s) in which he/she teaches.

7. All instructors must attend a minimum of 20 hours per year of recognized industry update training relevant to the areas in which their program is certified.

8. The program Advisory Committee must conduct at least two working meetings a year and must have a minimum of 5 people (excluding school personnel) on the committee. Minutes of the meetings must be provided for review by the on-site evaluation team and must reflect relevant areas of the standards as having been considered by the Advisory Committee.

9. The NATEF Standards recognize that program content requirements vary by program type and by regional employment needs. Therefore, flexibility has been built into the NATEF task list by assigning each task a priority number. The priority number indicates the minimum percentage of those tasks, by area, a program must include in their program in order to be certified in that area. The Task List is divided into three priority areas. The following guidelines must be followed:

 95% of all Priority 1 (P-1) items must be taught in the curriculum
 80% of all Priority 2 (P-2) items must be taught in the curriculum
 50% of all Priority 3 (P-3) items must be taught in the curriculum

10. A program that does not meet the minimum hour requirements may be eligible for certification if both of the following conditions are met for the program areas seeking certification:

 a. show evidence that all graduates from the previous academic year have taken the ASE certification examination, and
 b. show documentation that 75% of those graduates passed the ASE certification tests.

11. The concern for safety is paramount to the learning environment. Each program area has the following safety requirement preceding all related tasks:

 Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.
INFORMATION ABOUT EVALUATION TEAM LEADERS (ETLs)

Evaluation Team Leaders (ETLs) are educators who have been trained by NATEF to lead the on-site evaluation. The NATEF office will assign an ETL once a program has been approved for an on-site evaluation. Every effort will be made to assign an ETL located close to the school to reduce the cost for the evaluation. Three additional team members, selected by the program and approved by the ETL, are required for an automobile program on-site evaluation (see the following page for additional information about team members and on-site teams).

Persons selected as ETLs must:

1. have a minimum of six years of combined experience as an automobile technician and automobile instructor (at least three years experience as an automobile technician is required);
2. have a B.A. or B.S. in Education from a college or university recognized for teacher training by the state; and
3. be a current ASE certified master automobile technician (A1-A8).

Or, if a state does not require automobile instructors to have a B.A. or B.S. degree, the following qualifications will apply:

1. six years experience as an automobile technician,
2. four years automobile teaching experience at the secondary, post-secondary or community college level, and
3. current ASE certified master automobile technician (A1-A8).

ETL candidates who are active instructors must be directly associated with a certified program. ETL candidates who are inactive instructors must have formerly been directly associated with a certified program. Inexperienced ETLs must serve as an evaluation team member or observer for an initial on-site evaluation prior to acting in the capacity of an ETL.

ETL training is valid for three years. However, automatic three-year renewal is granted every time an ETL conducts an on-site evaluation. ETLs are required to attend additional training sessions or serve as a team member if they have not conducted an on-site evaluation within three years. This additional training is required even though the individual holds current ASE certification.

Anyone interested in becoming an Evaluation Team Leader should contact the NATEF office at (703) 669-6650 or their state Trade & Industrial Supervisor for more details.
INFORMATION ABOUT ON-SITE EVALUATION TEAM MEMBERS

The program requesting certification is responsible for recruiting and recommending on-site evaluation team members. The ETL must approve individuals recommended by the program. The on-site evaluation team members must be practicing automobile technicians, service managers or shop owners from businesses in the area served by the training program. **For initial certification only**, one team member may be an automobile instructor from another school district/system*.

Team members must have:

1. a high school diploma or the equivalent (industry or military training may be considered as the equivalent), and
2. at least seven years full-time experience as a general automobile technician.

ASE automobile certification is recommended but not required.

* An automobile instructor from another school district/system must have a minimum total of seven years experience, which must include three or more years full-time experience as an automobile technician and three or more years of post high school training.

The **initial** certification evaluation team is composed of four individuals: the ETL and three team members. Two team members must be from industry (one from a dealership and one from an independent repair facility). The third member may be from one of the following: a dealership, an independent repair facility or an automobile training program.

The **recertification** evaluation team is composed of three individuals: the ETL and two team members. One team member must be from a dealership and one team member must be from an independent repair facility.

Each program requesting initial certification or recertification must identify their choices for evaluation team members on the On-Site Evaluation Team Member List. An alternate team member choice must be identified on the On-Site Evaluation Team Member List in the event that one of the team members is unable to conduct the on-site evaluation. **The alternate team member must be from either a dealership or from an independent repair facility.**

Team members must not be advisory committee members, former instructors, or graduates of the program within the past ten years.

* **NATEF reserves the right to add an additional team member to an on-site evaluation team to fulfill ETL training requirements (inexperienced ETLs are required to serve as a team member before serving as an ETL).**
TASK LIST INFORMATION

An essential element of any curriculum or training program is a valid task list. Automobile technician instructors need a well-developed task list that serves as a solid base for course of study outlines and facilitates communication and articulation of their training programs with other institutions in the region.

It is a NATEF policy that the task list developed by the National Institute for Automotive Service Excellence (ASE) serves as the basis for the NATEF task list. Panels of technical service experts from the automotive service industry and career technical education are called upon to develop and validate the ASE and NATEF task lists.

The NATEF task list is used to develop the End-of-Program test, which was pilot tested in the spring of 1996, and became available for use nationwide in the spring of 1997. The ASE task list is used to develop the ASE certification examination, a nationally recognized symbol of competence in diagnosing and repairing vehicle problems.

Additional information on the development of the NATEF task list can be found in the Task List section.

All tasks have a Priority designation. NATEF Standards recognize that program content requirements vary by program type and regional employment needs. Therefore, flexibility has been built into the NATEF task list by assigning each task a priority number. The priority number simply indicates the minimum percentage of those tasks, by area, that a program must include in their curriculum in order to be certified in that area.

- Ninety-five percent (95%) of Priority 1 (P-1) items must be taught in the curriculum.
- Eighty percent (80%) of Priority 2 (P-2) items must be taught in the curriculum.
- Fifty percent (50%) of the Priority 3 (P-3) items must be taught in the curriculum.
TOOLS AND EQUIPMENT INFORMATION

The basic tools and equipment that must be available for use in the automobile program are listed in the Tools and Equipment section. Many tools and much of the equipment are the same for some or all of the program areas. However, some equipment is specialized and must be available for use in the selected program areas. These individual program area lists are included in the Tools and Equipment section.

The student hand tool list covers all program areas. This list indicates the tools a student will need to own to be successful in each of the specialty areas.

Although no brand names are listed, the equipment and tools must address the following programmatic issues:

1. **Safety** - Equipment and tools must have all shields, guards, and other safety devices in place, operable, and used.
2. **Type and Quality** - The tools and equipment used in a certified program must be of the type and quality found in industry. They must also be adequate and in sufficient quantity to meet the program goals and student performance objectives.
3. **Consumable Supplies** - Supplies should be in sufficient quantity to assure continuous instruction. Consumable supplies, such as solvents, sandpaper, etc. are not listed.
4. **Maintenance** - A preventive maintenance schedule should be used to minimize equipment down time.
5. **Replacement** - A systematic schedule for replacement should be used to maintain up-to-date tools and equipment at industry and safety standards. Information gained from student program evaluations as well as advisory committee input should be used in the replacement process.
6. **Inventory** - An inventory system should be used to account for tools, equipment, parts, and supplies.
7. **Parts Purchasing** - A systematic parts-purchasing system should be used from work order to supplier.
8. **Hand Tools** - Each student should be encouraged to purchase a hand tool set during the period of instruction.
9. **Storage** - Adequate storage of tools should be provided. Space for storage of the students' hand tools should be provided.
AUTOMOBILE PROGRAM EVALUATION

NATEF Standards for Initial Certification and Recertification are identical. Items listed below are critical for certification and are in **bold** print in the Automobile Program Self-Evaluation materials.

2.5 A Does the Advisory Committee, with at least five (5) in attendance, convene a minimum of two working meetings per year?

5.5 F Does the Advisory Committee review information from the annual follow-up procedure and provide input for modifications to the training program?

6.5 A Do the [automobile] areas provide theory and “hands-on” training for 95% of the P-1, 80% of the P-2, and 50% of the P-3 tasks, as evidenced by cross-referencing the course of study, lesson plans, job sheets, and student progress charts [in each area to be certified]?

6.5 B Are the tools and equipment available for the tasks taught in each program area?

7.1 A Are all shields, guards, and other safety devices in place, operable, and used?

7.1 B Do all students, instructors, and visitors wear safety glasses in the lab/shop area while lab is in session?

9.1 D Do instructors hold current ASE certification in the automobile area(s) they teach?

9.3 B Do instructors attend a minimum of 20 hours per year of recognized industry update training relevant to the areas in which their program is certified?

Programs must be able to support a *yes* response for all eight items. Programs must also meet the hour requirements listed in item 2 on page 5 in the areas identified for certification unless they meet both the requirements listed in item 10 on page 6. **If these responses are not achieved, do not apply for certification at this time.**

In addition, an on-site evaluation will not be scheduled unless the **average score** on each of Standards 6, 7, 8, and 9 is at least a **4** on the Automobile Program Self-Evaluation. Please refer to the Automobile Program Requirements for more information.

Instructors must be ASE certified in the areas they teach. Please refer to item 6 on page 6.
NATEF POLICIES ON ARTICULATION AGREEMENTS FOR ASE PROGRAM CERTIFICATION

In a number of states and localities, technician training programs are able to meet ASE standards for certification only by establishing an articulation effort between secondary and post-secondary programs. NATEF Trustee action, as well as language in the Carl D. Perkins Vocational Education Act, encourages articulation between programs at the secondary and post-secondary levels.

Articulation agreements encourage, but cannot require, graduates of secondary programs to go on to post-secondary education. Financial and social considerations suggest that many, perhaps most, graduates must seek employment upon graduation from high school.

Articulation agreements for automobile technician training programs may involve two or more training centers at secondary and post-secondary levels. There are two options available to secondary programs that choose to certify as articulated programs:

1. **Traditional Articulation**— This option allows Automobile programs to select a minimum of two of the four required automobile specialty areas in which to certify, and articulate with another ASE certified technician training program that provides instruction in at least the other two required areas. Articulated training centers may both certify in one or more of the same specialty areas as long as they meet the minimum required areas (Brakes, Electrical/Electronic Systems, Engine Performance, and Suspension & Steering) jointly. **Electrical/ Electronics Systems is required as one of the specialty areas of instruction for all programs that articulate under the traditional articulation method.**

2. **General Service Technician Program**— This program is intended to serve secondary automobile programs in areas where the local employers prefer to hire graduates who have a broad skill set and general understanding of all automotive systems rather than skill sets with greater depth in fewer areas. Articulated certification as a general service technician program is available only to secondary programs articulating with ASE certified post-secondary programs (with certification in the four required areas or more).

The input and advice of each school’s program advisory committee is critical to the decision about which certification option is most appropriate for that program and its students.

Articulation agreements must be in writing and approved by the administration of each institution. The agreement shall:

a. List the areas of instruction (either General Service Technician or selected traditional areas) to be offered by each training center.
b. Stipulate how credit* will be granted for successful completion of instruction. This should also include the criteria for evaluating successful completion.

c. Describe procedures for applying for credit* at the post-secondary level for instruction received at the secondary level.

* Credit is defined as a form of recognition for work that has been completed at the secondary level. It includes, but is not limited to, granting: academic credit, advanced placement, task completion, etc.

** IN EVERY CASE A SIGNED COPY OF THE ARTICULATION AGREEMENT MUST BE SUBMITTED WITH THE SELF-EVALUATION MATERIALS. **
RECOGNITION FOR CERTIFICATION

A program approved for certification will receive a plaque that bears the ASE seal and the school's name. Individual plates will be attached to the plaque to identify the areas in which the program is certified. These will also include the expiration date of certification. Any program certified in all eight areas will receive a Master Certification plaque. A statement below the seal will read:

"THE INSTRUCTION, COURSE OF STUDY, FACILITIES AND EQUIPMENT OF THIS INSTITUTION HAVE BEEN EVALUATED BY THE NATIONAL AUTOMOTIVE TECHNICIANS EDUCATION FOUNDATION AND MEET THE NATIONAL INSTITUTE FOR AUTOMOTIVE SERVICE EXCELLENCE STANDARDS OF QUALITY FOR THE TRAINING OF AUTOMOBILE TECHNICIANS IN THE FOLLOWING AREAS:

"""

Institutions receiving ASE certification are encouraged to put the following statement on the graduate's diploma or certificate:

"The person holding this diploma has participated in an automobile technician training program that was certified by the National Institute for Automotive Service Excellence and has completed instruction in the following areas:

"""

A screened ASE/NATEF logo may be overprinted with the above statement and placed on the graduate's diploma. A camera-ready logo is provided in the promotional materials a program receives upon certification.

A program approved for recertification will receive a plate which reads "RECERTIFIED Exp. 20 __".

Certified programs will also receive a 24"x30" sign indicating that the training program is ASE certified.
APPLIED ACADEMICS RECOGNITION

The NATEF Board of Trustees and the ASE Board of Directors has initiated a process to recognize ASE certified programs that are integrating academics and technical skills into the curricula. This effort should be a collaborative effort between the automobile instructors and the academic instructors in language arts, mathematics, and science.

ASE and NATEF will issue a certificate of excellence to those programs that provide documentation including, but not limited to, student assignments or activities, classroom/lab instructional materials, student performance records, and interviews with academic instructors.

Programs that wish to receive recognition must complete the Applied Academics Recognition form and return it with the application for certification or recertification. Documentation on applied academics activities must be available for the ETL at the time of the on-site evaluation.

Programs may receive recognition in Language Arts, Mathematics, Science, or any combination of the three areas.

To receive a copy of the *Applied Academics and Workplace Skills for Automobile Technicians* manual, please go to the NATEF website at www.natef.org or contact the NATEF office.
APPEALS AND ACTION FOR REVOCATION

APPEALS: PROGRAMS APPLYING FOR CERTIFICATION

A complaint received from any school concerning the procedures, evaluation or certification of the automobile technician training program must be made in writing to the ASE office in Leesburg, VA. It will be immediately referred to the Grievance Examiner who will acknowledge receipt of the complaint in writing to the complainants. Thereafter, the Grievance Examiner will investigate the complaint and prepare a report. A copy of the report will be given to the complainants and to an Appeals Committee within thirty (30) days of the receipt of the complaint.

The Appeals Committee will review the findings and recommendations of the Grievance Examiner, together with the complaint and any data supplied in connection therewith. The Appeals Committee will be empowered to dismiss the matter or to initiate such action as it may deem appropriate.

If the complainants desire to review the Appeals Committee's evaluation, they may do so at the office of the Grievance Examiner in Leesburg, VA. However, they will not be permitted to make copies of the results.

ACTION FOR REVOCATION: ASE CERTIFIED PROGRAMS

The Appeals Committee will also advise the ASE President of its judgments and recommendations for action in any cases of malpractice or misrepresentation involving the misuse of ASE certification for an automobile technician training program. Upon receipt of a complaint alleging misuse or misrepresentation by a certified program, the Grievance Examiner will be notified. The Grievance Examiner will notify the parties against whom the complaint has been filed, in writing, indicating the alleged wrongdoing. The parties will be further advised that they may submit a written explanation concerning the circumstances of the complaint within thirty (30) days. After the Grievance Examiner has considered the complaint and received the explanation, if any, the Grievance Examiner will determine whether there is a reasonable basis for a possible wrongdoing. If the Grievance Examiner finds such a basis, the Grievance Examiner will inform the parties of the findings. At that time, the Grievance Examiner will inform the parties of their right to a hearing before the Appeals Committee. The parties will have fifteen (15) days to notify the Grievance Examiner, in writing, of their decision.

In the event the involved parties elect to be bound by the findings of the Grievance Examiner without a hearing, the Grievance Examiner will submit a written report with recommendations to the Chair of the Appeals Committee. This report will be submitted within sixty (60) days of the receipt of the waiver of a hearing. The Chair of the Appeals Committee will mail a copy of the Grievance Examiner's findings and recommendations to the parties. In the event that the involved parties elect to appear at a hearing, the Chair of the Appeals Committee will call a Board of Inquiry. This Board will consist of four ASE Board members, one from each of the
following categories: Education, Public Interest, Service Employers, and Vehicle and Service Products Manufacturers. The Board of Inquiry will be convened in Leesburg, VA at a date and time determined by the Chair. The Board will notify the involved parties, in writing, regarding the time and place of the hearing.

The Grievance Examiner will be responsible for investigating and presenting all matters pertinent to the alleged wrongdoing to the Board of Inquiry. The involved parties will be entitled to be at the hearings with or without counsel. The parties will be given an opportunity to present such evidence or testimony as they deem appropriate.

The Board of Inquiry will notify the Chair of the Appeals Committee of its findings and recommendations in writing within ten (10) days after the hearing is completed.

The Appeals Committee will review the findings and recommendations of either the Grievance Examiner if a hearing was waived, or the Board of Inquiry if a hearing was held. The Appeals Committee will determine if the record on the complaint supports a finding of conduct contrary to or in violation of reasonable practices. If two-thirds of the Appeals Committee so find, the Committee will recommend to the President of ASE appropriate sanctions or courses of action against the parties charged.
DEFINITIONS – EDUCATIONAL TERMS

2. ARTICULATION: A formal written agreement, usually between a secondary and post-secondary institution that are geographically within a reasonable daily commuting distance of each other. The agreement will clearly denote that students completing specific secondary courses in accordance with predetermined performance criteria will have partially completed commensurate requirements for a completion certificate or diploma awarded by the post-secondary institution. Commensurate requirements could be in the form of credit equivalents, advanced placement, task completion, etc. at the post-secondary institution.

3. CURRICULUM: All the objectives of the lesson plan with respect to the content and learning activities, arranged in a sequence for a particular instructional area. An orderly arrangement of integrated subjects, activities, time allocations, and experiences which students pursue for the attainment of a specific educational goal.

4. COMPETENCY: (Hands On) - Performance of task to the level or degree specified in the performance standard and curriculum for the task.

5. COMPETENCY: (Written) – Understanding of task to the level or degree specified in the performance standard and curriculum for the task.

6. CRITERION REFERENCED MEASURE(S): An exercise based on a performance objective for a task, and designed to measure attainment of that objective. (Also called performance test(s) or criterion-referenced test.)

7. GOAL: A statement of the intended outcome of participation in the training program.

8. MASTERY: (See Competency - Hands On and Competency - Written).

9. OBJECTIVE, PERFORMANCE: A written statement describing an intended outcome (competent task performance) in terms of student performance. (Also called "behavioral" objective or instructional objective) R.F. Mager Associates, 13245 Rhoda Drive, Los Altos Hill, California.

10. ON-VEHICLE SERVICE AND REPAIR WORK: The processing, assignment and student performance of the appropriate tasks on vehicles donated by manufacturers or other sources, customer-owned, and other training vehicles.
11. **PERSONAL CHARACTERISTIC**: Attributes that are not readily measurable, and are generally in the affective or cognitive domains.

12. **PRIORITY RATINGS** – Indicates the minimum percentage of tasks, by area, a program must include in its curriculum in order to be certified in that area.

13. **STANDARD**: "...Something established for use as a rule or basis of comparison in measuring or judging capacity, quantity, content, extent, value, quality, etc." *Webster's New World Dictionary (1991)*

14. **STANDARD – (PERFORMANCE)**: A written specification of the results of acceptable task performance.

15. **STANDARD – (PERSONAL)**: An attribute or characteristic of an individual that facilitates entry into, or advancement within an occupation.

16. **STANDARD – (PROGRAM)**: A specific quality or desired characteristic of a training program designed to prepare individuals for employment or advancement.

17. **TASK**: A unit of work activity which has an identifiable beginning and ending point in its accomplishment, and consists of one or more measurable steps.

18. **TRAINING STATION**: An area with appropriate tools and equipment, large enough to allow the development of both safety and competency in task performance.

Must or shall is an imperative need, duty or requirement; an essential or indispensable item; mandatory.

Should is used to express a recommendation, not mandatory but attainment would increase program quality.

May or could expresses freedom to follow a suggested alternative.
PROCEDURES FOR CERTIFICATION/RECERTIFICATION

Process Overview

NOTE: NATEF recommends that programs maintain a file containing copies of all reference and documentation materials developed during all phases of the certification process.

1. Purchase application materials

The program requesting certification must purchase self-evaluation materials from NATEF in Leesburg, VA. To begin the certification process, the program must return the following items from the evaluation materials packet:

a. Application for Certification or Recertification
b. Self-Evaluation Summary Sheet
c. On-site Evaluation Team Member List
d. Instructor Qualifications Forms and Instructor Training Forms
e. Advisory Committee List
f. Articulation Agreement (if applicable)
g. Applied Academics Recognition Forms (optional)
h. Purchase Order, Check, or Credit Card Authorization for Application Fee and On-Site Evaluation Team Packets (self-evaluations will be returned if received without payment)
i. Facilities Evaluation (CNG/LPG programs only)

2. NATEF review of application

The national office will review the materials within 30 days. Following the review, the Program Administrator and the state Trade & Industrial Supervisor will be notified about the status of the program. The program will be identified as one of the following:

a. Qualified for on-site evaluation for all the specialty areas listed on the application.
b. Qualified for on-site evaluation for some but not all specialty areas listed on the application. The program administrator may proceed with the on-site evaluation for the areas that qualify at that time OR make improvements and resubmit the application at a later date.
c. Not qualified for an on-site evaluation at that time. NATEF will indicate specific improvements that must be made before the on-site evaluation can be scheduled.

3. Evaluation Team Leader (ETL) assigned, Program Coordinator makes contacts

NATEF will assign an Evaluation Team Leader (ETL) to the program. NATEF will send the program the Application for On-site Evaluation. With a legitimate reason, the Program Coordinator may contact the NATEF office to request a different ETL. A request for a different ETL must be in writing and specific as to the reason for the request.
NOT be a present or former teacher or administrator of the program to be evaluated.) The Program Coordinator must contact the ETL to arrange a date for the on-site evaluation.

The Application for the On-site Evaluation will be sent with instructions that outline the plans for the local administration and the costs for the ETL's services and expenses. All costs will be paid by the institution requesting certification.

4. **Send on-site application, course of study, and list of on-site evaluation team members to ETL**

The Application for On-site Evaluation, signed by the program administrator, must be sent to the ETL. A copy of the course of study, Advisory Committee minutes (one year’s worth for initial certification; five year’s worth for recertification) and this application must be received by the ETL at least two weeks prior to the on-site evaluation or the on-site must be rescheduled. The course of study should include the following items:

 a. Syllabus for each class
 b. Tasks to be taught under each area, specified according to Priority designations P-1, P-2, P-3. (Tasks may be taught at different times in the program or in more than one area. However, the hours for the tasks may be counted only once.)
 c. Number of contact hours for each area
 d. Areas and sequence of instruction to be included in the program
 e. List of training materials and audio-visual materials used in training
 f. Sample evaluation form used to track student progress

The On-site Evaluation Team Member List must be included for the ETL to review and approve. Once a date has been set and the on-site evaluation team members have been approved by the ETL, the program coordinator must contact the on-site evaluation team members to make arrangements for the evaluation day(s).

5. **On-site evaluation**

Initial certification requires 2 consecutive days while students are in class for the on-site evaluation review of all the standards. However, if more than one program is applying for certification (general automotive and GM ASEP, for example), additional team members and additional days may be required to complete the on-site evaluation. The NATEF office will determine the need for additional team members and days.

Recertification requires a 1-day on-site evaluation while students are in class. The on-site evaluation team reviews Standards 6-9 as well as all go/no-go (critical) items. However, if the Advisory Committee average on Standards 1-5 or Standard 10 is less than 4, the on-site evaluation team must also review these standards. The NATEF office will determine whether an additional day or additional team members will be required to complete the evaluation.
6. ETL reports results to NATEF

The ETL will submit all on-site evaluation materials and a final report to NATEF with a recommendation for or against program certification.

7. Program certification

The national office will review the final report and all additional evaluation materials to determine whether the program meets the requirements for certification and will make their recommendation to the ASE Board. The ASE President will approve certification as sanctioned by the Board of Directors.

Programs that do not earn certification will be given a written report specifying improvements that must be made to qualify for certification. The decision at the national level will be final unless appealed to the ASE Board of Directors. Appeals will be heard only at regular meetings of the Board.

The Program Administrator and the state Trade & Industrial Supervisor will be notified of all decisions regarding the certification status of all programs applying for ASE certification.

8. Display and reporting of certification materials

A wall plaque identifying the certified areas will be forwarded from the national office to the program administrator. Schools must accurately report areas of ASE certification.

9. Certified Technician Training Program List

The NATEF office maintains a current listing of all ASE certified programs. The list is made available on the NATEF website.

10. Compliance report

A program will be certified for five years. A compliance report is required after 2½ years. The compliance report will be used to verify that a program is maintaining its standards. NATEF will notify the program administrator of the compliance date and will send the appropriate compliance review forms at that time. The Advisory Committee must complete the report and the program administrator must return the forms to the NATEF office.

NATEF may randomly select programs at the 2½-year period for an on-site compliance review by an ETL and NATEF Trustees, staff, consultants, or other designated representatives. The selected programs will be notified, in advance, of the on-site review by the NATEF office. Programs should be prepared to provide documentation on how they are maintaining the standards. All costs for this on-site review will be paid by NATEF.
11. Recertification

The NATEF office will contact the program six (6) months prior to the certification expiration date. Programs must formally request recertification materials and follow the process outlined above.
On-site Evaluation Cost Sheet

AUTOMOBILE

<table>
<thead>
<tr>
<th></th>
<th>CERTIFICATION</th>
<th>RECERTIFICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certification Manuals</td>
<td>$75.00</td>
<td>$65.00</td>
</tr>
<tr>
<td>(Applied Academics general statements and workplace skills list are included)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Fee</td>
<td>*$250.00</td>
<td>*$250.00</td>
</tr>
<tr>
<td>On-site Evaluation Team Manuals</td>
<td>*$200.00</td>
<td>*$150.00</td>
</tr>
<tr>
<td>(minimum of 4 sets for initial cert. and 3 sets for recert. @ $50 each.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Honorarium for Evaluation Team Leader (ETL) @ $225/day</td>
<td>$450.00</td>
<td>$225.00</td>
</tr>
<tr>
<td>*Please see below</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimated mileage, hotel, and meal expenses for the ETL</td>
<td>$150.00</td>
<td>$100.00</td>
</tr>
<tr>
<td>ESTIMATED TOTAL COSTS</td>
<td>$1125.00</td>
<td>$790.00</td>
</tr>
</tbody>
</table>

NOTE: It is anticipated that team members recruited from local independent repair facilities and dealerships will serve without charge to the institution.

The NATEF office must receive the application fee and payment for the on-site evaluation team packets with the completed application. Applications received without these payments will be returned to the program for resubmission with payment.

ETLs are to receive an additional honorarium of $100 per additional program when evaluating multiple programs at one location. Example: An ETL evaluates one general program and one manufacturer-specific program during an initial certification on-site evaluation. The honorarium paid to the ETL would be $450 for the standard two-day honorarium, and $100 for the additional program, for a total honorarium of $550.

ETLs are paid as independent contractors, not as school employees.

Costs of certification/recertification are subject to change. Contact the NATEF office for current information.
AUTOMOBILE PROGRAM STANDARDS

STANDARD 1 - PURPOSE

THE AUTOMOBILE TECHNICIAN TRAINING PROGRAM SHOULD HAVE CLEARLY STATED PROGRAM GOALS, RELATED TO THE NEEDS OF THE STUDENTS AND EMPLOYERS SERVED.

Standard 1.1 - Employment Potential
The employment potential for automobile technicians, trained to the level for the specialty or general areas outlined in the program goals, should exist in the geographic area served by the program.

Standard 1.2 - Program Description/Goals
The written description/goals of the program should be shared with potential students and should include admission requirements, employment potential, area(s) of specialty training offered, and the cost of all tuition and fees. Technical qualifications of the faculty and the overall goal(s) of the program should also be included.

STANDARD 2 - ADMINISTRATION

PROGRAM ADMINISTRATION SHOULD ENSURE THAT INSTRUCTIONAL ACTIVITIES SUPPORT AND PROMOTE THE GOALS OF THE PROGRAM.

Standard 2.1 - Student Competency Certification
The certificate or diploma a student receives upon program completion should clearly specify the area(s) of demonstrated competency.

Standard 2.2 - Chain of Command
An organizational chart should be used to indicate the responsibilities for instruction, administration, and support services.

Standard 2.3 - Administrative Support
Positive administrative support from institutional and local governing bodies should be demonstrated. Indicators of administrative support would include: support for staff in-service training; provision of appropriate facilities; up-to-date tools, equipment, training support materials, and curriculum.

Standard 2.4 - Written Policies
Written policies should be adopted by the administration and policy board for use in decision-making situations and to provide guidance in achieving the program goals. Policies regarding safety, liability, and lab/shop operation should be written and prominently displayed as well as provided to all students and instructors.
Standard 2.5 - Advisory Committee
An Advisory Committee consisting of at least five (5) members (not including school personnel), must convene at least two times a year and be utilized to provide counsel, assistance, and information from the community served by the training program. This Committee should be broadly based and include former students, employed technicians, employers, and representatives for consumers’ interests.

Standard 2.6 - Public/Community Relations
An organized plan should be used to provide the community at large information regarding the training program, its graduates, its plans, and any services provided to the community.

Standard 2.7 – Customer Vehicle Work
A systematic method of collecting, documenting, and disbursing customer vehicle work repair receipts should be used. Instructional staff should not be required to collect payment for customer vehicle work repairs. (This applies only to programs that accept customer vehicles for instruction.)

STANDARD 3 - LEARNING RESOURCES

SUPPORT MATERIAL CONSISTENT WITH BOTH PROGRAM GOALS AND PERFORMANCE OBJECTIVES SHOULD BE AVAILABLE TO STAFF AND STUDENTS.

Standard 3.1 - Service Information
Service information with current manufacturer’s service procedures and specification data for vehicles manufactured within the last ten (10) years should be available. This information should be accessible to students while working in the lab/shop area.

Standard 3.2 - Multimedia
Appropriate up-to-date multimedia materials such as video equipment, transparencies, CD ROM, etc. should be readily available and utilized in the training process.

Standard 3.3 - Instructional Development Services
The service of professional instructional development personnel should be used when available. At a minimum, equipment and supplies should be available for duplication or copying printed materials and transparencies. Instructional development personnel should conduct in-service and/or training in curriculum and media development.

Standard 3.4 - Periodicals
Current general and technical automobile magazines and newspapers should be available for student and instructor use.

Standard 3.5 - Student Materials
Necessary instructional texts or pertinent material should be available for each student to satisfy the objectives of the mode of instruction used. Basic and specialty textbooks should have copyright dates that are not over six (6) years old.

STANDARD 4 - FINANCES

FUNDING SHOULD BE PROVIDED TO MEET THE PROGRAM GOALS AND PERFORMANCE OBJECTIVES.

Standard 4.1 - Program Training Cost
The enrollment in the program or program area should be sufficient to keep the per-student training costs to a realistic figure.

Standard 4.2 - Budget
An adequate annual budget should be developed, allocated, and used for the operation of the program.

Standard 4.3 - Budget Preparation
The budget should be prepared by the institutional administration in conjunction with the program faculty.

Standard 4.4 - Status Reports
Budget status reports should be made available to program staff at least quarterly.

STANDARD 5 - STUDENT SERVICES

SYSTEMATIC SKILLS ASSESSMENT, INTERVIEWS, COUNSELING SERVICES, PLACEMENT, AND FOLLOW-UP PROCEDURES SHOULD BE USED.

Standard 5.1 – Skills Assessment
For students to develop the skills and knowledge required to service today’s automobiles, each student must possess, or be given the opportunity to develop, essential foundation skills in reading, mathematics, science, and mechanical aptitude. To this end, a formal skills assessment instrument (process) for these fundamental skills should be used to evaluate students to ensure that each student has a reasonable probability of success as an automobile technician. Testing procedures and how the test results will be used (e.g., placement, assessment of student’s developmental needs, etc.) should be stated in program explanatory material, and justification for all requirements should be available.

Standard 5.2 - Pre-admission Counseling
Prior to program admission, a student should be counseled regarding automotive careers.
Standard 5.3 - Student Records
Permanent records of all students, former and current, should be available, preferably in one central location, and kept confidential.

Standard 5.4 - Placement
A systematic student placement system should be used to assist program graduates to obtain employment in the automobile industry.

Standard 5.5 – Annual Follow-up
A follow-up system should be used to determine students' employment location and for feedback regarding the efficiency, effectiveness, and appropriateness of training. The follow-up procedure should be designed to assure feedback regarding needed additions to or deletions from the training curriculum, program, and tools and equipment. Follow-up of graduates employed outside of the automobile industry should indicate reasons for non-automobile employment. When applicable, this information should be used to modify the training quality and/or content.

Standard 5.6 - Legal Requirements
The training program should meet all applicable local, state, and federal requirements.

STANDARD 6 - INSTRUCTION

INSTRUCTION MUST BE SYSTEMATIC AND REFLECT PROGRAM GOALS. A TASK LIST AND SPECIFIC PERFORMANCE OBJECTIVES WITH CRITERION REFERENCED MEASURES MUST BE USED.

Standard 6.1 - Program Plan
The training plan should progress in logical steps, provide for alternate sequences, where applicable, and be made available to each student.

Standard 6.2 - Student Training Plan
A training plan for each student should be developed and used, indicating the student's training goal(s) and specific steps needed to meet that goal. Students should be given a copy of their training plan.

Standard 6.3 - Preparation Time
Adequate time should be provided for teacher preparation and program development.

Standard 6.4 - Teaching Load
The instructor/student ratio and class contact hours should allow time for interaction on a one-to-one basis.
Standard 6.5 - Curriculum
All tasks have been given a priority rating. Ninety-five percent (95%) of the tasks designated as Priority 1 (P-1) must be taught in the curriculum. Eighty percent (80%) of the tasks designated as Priority 2 (P-2) must be taught in the curriculum. Fifty percent (50%) of the tasks designated as Priority 3 (P-3) must be taught in the curriculum. Additional tasks may be included to meet the needs of local employers. All additional tasks should be approved by the Advisory Committee.

Instruction on the legal aspects and responsibilities of the automobile technician in areas such as Environmental Protection Agency regulations, safety regulations, OSHA regulations, and other appropriate requirements should be included in the curriculum. Instruction and practice in filling out work order forms, ordering parts, and basic record keeping should be a part of the training program.

Tools and equipment must be available to perform the tasks in each of the areas for which certification is requested.

Standard 6.6 - Student Progress
A record of each student's progress should be maintained through the use of a progress chart or other recording device. The record should indicate tasks required for program completion and those tasks the student has mastered.

Standard 6.7 - Performance Standards
All instruction should be performance based, with an acceptable performance standard stated for each task. These standards should be shared with students and potential employers. Students should demonstrate "hands-on competency" of a task before the instructor verifies a student's performance.

Standard 6.8 - Safety Standards
Safety instruction should be given prior to lab/shop work and be an integral part of the training program. A safety test should be included in the training program. Students and instructors should comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

Standard 6.9 - Personal Characteristics
All training activities and instructional material should emphasize the importance of maintaining high personal standards.

Standard 6.10 - Work Habits/Ethics
The training program should be organized in such a manner that work habits and ethical practices required on the job are an integral part of the instruction.
Standard 6.11 - Provision for Individual Differences
The training program should be structured in such a manner that students with different levels of cognitive and psychomotor skills can be accommodated.

Standard 6.12 - Related Instruction
Instruction in related mathematics, science, communications, and interpersonal relations should be provided and coordinated with ongoing instruction in the training program. This instruction should be provided by a qualified instructor.

Standard 6.13 - Testing
Both written and performance based tests should be used to validate student competency. Students should be encouraged to take certification tests that are publicly recognized indicators of capabilities.

Standard 6.14 - Evaluation of Instruction
Instructional procedures should be evaluated in a systematic manner. This evaluation should be through regular reviews by students and the administration. Self-evaluation of instruction should also be utilized on a systematic and regular basis. This system should include input from former students and the Advisory Committee members. Instructional procedures should show responsiveness to the feedback from these evaluations.

Standard 6.15 – On-Vehicle Service and Repair Work
On-vehicle service and repair work should be scheduled to benefit the student and supplement ongoing instruction on items specified in the NATEF task list. A student should have had instruction and practice on a specific repair task before on-vehicle service and repair work requiring that task is assigned. Vehicles donated by the manufacturers or other sources, customer-owned vehicles, and other training vehicles may be used as the primary source of on-vehicle service and repair work. Training program student-owned vehicles, school buses, and other vehicles owned and operated by the governing body of the school should not be the primary source of on-vehicle service and repair work vehicles. All vehicles in the lab/shop should have a completed industry-type work order attached to or on the vehicle.

Standard 6.16 - Articulation
Agreements between programs with equivalent competencies should be used to eliminate unnecessary duplication of instruction and foster continued study.
STANDARD 7 - EQUIPMENT

EQUIPMENT AND TOOLS USED MUST BE OF THE TYPE AND QUALITY FOUND IN THE REPAIR INDUSTRY AND MUST ALSO BE THE TYPE NEEDED TO PROVIDE TRAINING TO MEET THE PROGRAM GOALS AND PERFORMANCE OBJECTIVES.

Standard 7.1 - Safety
Equipment and tools used in the training program must have all shields, guards, and other safety devices in place, operable, and used. Safety glasses must be worn by all students, instructors, and visitors in the lab/shop area while lab is in session.

Standard 7.2 - Quantity and Quality
The tools and equipment used in the training program should reflect the program goals and performance objectives. Sufficient tools and equipment should be available for the training offered. The tools and equipment should meet industry quality standards.

Standard 7.3 - Consumable Supplies
Sufficient consumable supplies should be readily available to assure continuous instruction.

Standard 7.4 - Maintenance
A preventive maintenance schedule should be used to minimize equipment down-time.

Standard 7.5 - Replacement
An annual review process should be used to maintain up-to-date tools and equipment at industry and safety standards. Student follow-up and Advisory Committee input should be used in this process.

Standard 7.6 - Inventory
An inventory system should be used to account for tools, equipment, parts, and supplies.

Standard 7.7 - Parts Purchasing
A systematic parts purchasing system, from work order - to parts specialist - to jobber, should be used. Task performance should not be unreasonably delayed due to lack of replacement parts.

Standard 7.8 - Hand Tools
Each student should have access to basic hand tools comparable to tools required for employment. Students should be encouraged to purchase a hand tool set during the period of instruction.
STANDARD 8 - FACILITIES

THE PHYSICAL FACILITIES MUST BE ADEQUATE TO PERMIT ACHIEVEMENT OF THE PROGRAM GOALS AND PERFORMANCE OBJECTIVES.

Standard 8.1 - Training Stations
Training stations (bench and on-vehicle service and repair work) should be available in the type and number required for the performance of tasks outlined in the program goals and performance objectives.

Standard 8.2 - Safety
The facilities should meet all applicable safety standards and an emergency plan should be in place and posted in all classrooms and lab/shop areas.

Standard 8.3 - Maintenance
A written facilities maintenance program should be used to ensure facilities are suitable when required for instruction.

Standard 8.4 - Housekeeping
The classroom(s), lab/shop, and support area(s) should be kept clean and orderly.

Standard 8.5 - Office Space
An area separate from the lab/shop should be available and convenient for the instructor(s) use as an office.

Standard 8.6 - Instructional Area
A classroom convenient to, but separate from, the lab/shop area should be available for instruction and other non-lab/shop activities.

Standard 8.7 - Storage
Storage areas for tools, parts, supplies, and automobiles should be sufficient to support the activities outlined in the program goals and performance objectives. Security should be provided to prevent pilferage and vandalism.

Standard 8.8 - Support Facilities
Restrooms and clean-up areas should be provided for both male and female students and should be convenient to the instructional area.

Standard 8.9 - Ventilation
An adequate exhaust fume removal system should be in place and operational. When appropriate, heating and cooling systems should be used to provide sufficient comfort for learning.

Standard 8.10 - First Aid
A first aid kit should be in place and should comply with local regulations and school policy.
Standard 8.11 - Facility Evaluation
The Advisory Committee should conduct an annual evaluation of the facilities to assure adequacy to meet program goals.

STANDARD 9 - INSTRUCTIONAL STAFF

THE INSTRUCTIONAL STAFF MUST HAVE TECHNICAL COMPETENCY AND MEET ALL STATE AND LOCAL REQUIREMENTS FOR CERTIFICATION.

Standard 9.1 - Technical Competency
Instructors must hold current ASE certification in the automobile areas they teach and which are being evaluated for program certification.

Standard 9.2 - Instructional Competency/Certification
Instructors should meet all state certifying requirements.

Standard 9.3 - Technical Updating
Faculty members should be provided technical materials required to maintain their competency. Instructors must attend a minimum of 20 hours of technical update training each year.

Standard 9.4 - First Aid
The program should have a written policy, approved by the administrator of the school, on First Aid procedures.

Standard 9.5 - Substitutes
A systematic method of obtaining "substitute" instructors should be used to assure instructional continuity. An orientation session for substitutes should be held on a regular basis. The substitute should be a competent automobile instructor.

STANDARD 10 - COOPERATIVE AGREEMENTS

WRITTEN POLICIES AND PROCEDURES SHOULD BE USED FOR COOPERATIVE AND APPRENTICESHIP TRAINING PROGRAMS. (This applies only to programs that offer cooperative/apprenticeship training.)

Standard 10.1 - Standards
The student training plan and performance standards should be developed and coordinated by the automobile instructor.

Standard 10.2 - Agreements
All agreements should be written and legally binding.
Standard 10.3 - Supervision
A supervising automobile instructor or supervising co-op coordinator should be assigned responsibility, authority, and time to coordinate and monitor automobile cooperative/apprenticeship programs.
TASK LIST AND ASSUMPTIONS

The NATEF task list was reviewed and updated in February 2005. A national committee was assembled in Alpharetta, Georgia to review the standards used in the automobile certification program. The committee consisted of individuals representing the major automobile manufacturers, automobile repair shop owners and technicians, automobile instructors and trainers, and automobile equipment and parts suppliers.

The committee reviewed the standards, task list, tools and equipment list, program hours, and instructor qualifications. The committee also had the most current National Institute for Automotive Service Excellence (ASE) automobile task lists for reference purposes.

All the tasks are assigned a priority number: P-1, P-2, or P-3. Please refer to the Task List Information in the Policies section for additional information on the requirements for instruction on tasks. **NOTE: For programs certifying under the General Service Technician Program, there is a separate task list. Please refer to the General Service Technician Program Section of this manual.**

Theory instruction and hands-on performance of all the basic tasks will provide initial training for **entry-level** employment in the automotive service field or further training in any or all of the specialty areas. Competency in the tasks will indicate to employers that the graduate is skilled in that area.

1. It is assumed that:

 * in all areas, appropriate theory, safety, and support instruction will be required for performing each task;
 * the instruction has included identification and use of appropriate tools and testing and measurement equipment required to accomplish certain tasks;
 * the student has received the necessary training to locate and use current reference and training materials from accepted industry publications and resources;
 * in all areas, the student has demonstrated the ability to write work orders and warranty reports, to include information regarding problem resolution and the results of the work performed for the customer and manufacturer. The writing process will incorporate the “Three C’s” (concern, cause and correction) as a format to communicate this information.

2. It is assumed that:

 * all diagnostic and repair tasks described in this document are to be accomplished in accordance with manufacturer's recommended procedures and safety precautions as published.
3. It is assumed that:

* individual training programs being evaluated for certification should have written and
detailed performance standards for each task covered and taught in the curriculum;
* the learning progress of students will be monitored and evaluated against these
performance standards;
* a system is in place that informs all students of their individual progress through all
phases of the training program.

4. It is assumed that:

* individual courses of study will differ across automobile technician training programs;
* development of appropriate learning delivery systems and tests which monitor student
progress will be the responsibility of the individual training program.

5. It is assumed that:

* all students will receive instruction in the storage, handling, and use of Hazardous
Materials as required in Hazard Communication Title 29, Code of Federal Regulation
Part 1910.1200, ‘Right to Know Law’, and state and local requirements;
* hazardous and toxic materials will be handled, removed and recycled or disposed of
according to federal, state, and local regulations.
DEFINITIONS – TECHNICAL TERMS

ADJUST - To bring components to specified operational settings.

ALIGN - To bring to precise alignment or relative position of components.

ANALYZE - To examine the relationship of components of an operation.

ASSEMBLE (REASSEMBLE) - To fit together the components of a device.

BALANCE - To establish correct linear, rotational or weight relationship.

BLEED - To remove air from a closed system.

CAN – Controller Area Network. CAN is a network protocol (SAE J2284/ISO 15765-4) used to interconnect a network of electronic control modules. Some manufacturers began implementing CAN with model year 2003. By model year 2008, the California Air Resources Board (CARB) requires the use of CAN on all vehicles.

CHARGE - To bring to "full" state, e.g., battery or air conditioning system.

CHECK - To verify condition by performing an operational or comparative examination.

CLEAN - To rid component of extraneous matter for the purpose of reconditioning, repairing, measuring or reassembling.

CONCENTRICITY - A comparison of the center point between circular measurements in relation to each other.

CONDUCTANCE TEST – A battery test used to evaluate the condition of the battery. The conductance test equipment applies a known AC voltage with a given frequency across the battery and measures the resulting current flow. The tester uses this information to evaluate the relative health of the battery as compared to the battery rating (e.g. its CCA).

DEGLAZE – To restore correct surface finish.

DETERMINE - To establish the procedure to be used to affect the necessary repair.
DETERMINE NECESSARY ACTION – Indicates that the diagnostic routine(s) is the primary emphasis of a task. The student is required to perform the diagnostic steps and communicate the diagnostic outcomes and corrective actions required addressing the concern or problem. The training program determines the communication method (worksheet, test, verbal communication, or other means deemed appropriate) and whether the corrective procedures for these tasks are actually performed.

DIAGNOSE - To locate the root cause or nature of a problem by using the specified procedure.

DISASSEMBLE - To separate a component's parts as a preparation for cleaning, inspection or service.

DISCHARGE - To empty a storage device or system.

EVACUATE - To remove air, fluid or vapor from a closed system by use of a vacuum pump.

FLUSH - To use a fluid to clean an internal system.

HIGH VOLTAGE – Voltages of 50 volts and higher.

HONE - To restore or resize a bore by using rotating cutting stones.

JUMP START - To use an auxiliary power supply, e.g., battery, battery charger, etc. to assist a battery to crank an engine.

LOCATE – Determine or establish a specific spot or area.

MEASURE - To compare existing dimensions to specified dimensions by the use of calibrated instruments and gauges.

ON-BOARD DIAGNOSTICS (OBD) - A diagnostic system contained in the Powertrain Control Module (PCM), which monitors computer inputs and outputs for failures. OBD II is an industry-standard, second generation OBD system that monitors emissions control systems for degradation as well as failures.

PARASITIC DRAW - Electrical loads which are still present when the circuit is turned OFF.

PERFORM - To accomplish a procedure in accordance with established methods and standards.

PERFORM NECESSARY ACTION – Indicates that the student is to perform the diagnostic routine(s) and perform the corrective action item. Where various scenarios (conditions or situations) are presented in a single task, at least one of the scenarios must be accomplished.

PURGE - To eliminate an undesired air or fluid from a closed system.
REMOVE - To disconnect and separate a component from a system.

REPAIR - To restore a malfunctioning component or system to operating condition.

REPLACE - To exchange a component with a new or rebuilt component; to reinstall a component.

RESURFACE – To restore correct finish.

SERVICE - To perform a specified procedure when called for in the owner's or service manual.

TEST - To verify condition through the use of meters, gauges or instruments.

TORQUE - To tighten a fastener to specified degree or tightness (in a given order or pattern if multiple fasteners are involved on a single component).

VERIFY - To establish that a problem exists after hearing the customer's complaint and performing a preliminary diagnosis.

VOLTAGE DROP - A reduction in voltage (electrical pressure) caused by the resistance in a component or circuit.
NATEF TASK LIST

ENGINE REPAIR

For every task in Engine Repair, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

I. ENGINE REPAIR

A. General Engine Diagnosis; Removal and Reinstallation (R & R)

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction. P-1

2. Identify and interpret engine concern; determine necessary action. P-1

3. Research applicable vehicle and service information, such as internal engine operation, vehicle service history, service precautions, and technical service bulletins. P-1

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, and calibration decals). P-1

5. Inspect engine assembly for fuel, oil, coolant, and other leaks; determine necessary action. P-1

6. Diagnose engine noises and vibrations; determine necessary action. P-2

7. Diagnose the cause of excessive oil consumption, unusual engine exhaust color, odor, and sound; determine necessary action. P-2

8. Perform engine vacuum tests; determine necessary action. P-1

9. Perform cylinder power balance tests; determine necessary action. P-1

10. Perform cylinder cranking compression tests; determine necessary action. P-1

11. Perform cylinder leakage tests; determine necessary action. P-1
12. Remove and reinstall engine in a front-wheel or rear wheel drive vehicle (OBDII or newer); reconnect all attaching components and restore the vehicle to running condition.

13. Install engine covers using gaskets, seals and sealers as required.

I. ENGINE REPAIR

B. Cylinder Head and Valve Train Diagnosis and Repair

1. Remove and reinstall cylinder heads and gaskets; tighten according to manufacturer’s specifications and procedures.

2. Visually inspect cylinder head(s) for cracks; check gasket surface areas for warpage and leakage; check passage condition.

3. Inspect valve springs for squareness and free height comparison; determine necessary action.

4. Replace valve stem seals on an assembled engine; inspect valve spring retainers, locks, and valve grooves; determine necessary action.

5. Inspect valve guides for wear; check valve stem-to-guide clearance; determine necessary action.

6. Inspect valves and valve seats; determine necessary action.

7. Check valve face-to-seat contact and valve seat concentricity (runout); determine necessary action.

8. Check valve spring assembled height and valve stem height; determine necessary action.

9. Inspect pushrods, rocker arms, rocker arm pivots and shafts for wear, bending, cracks, looseness, and blocked oil passages (orifices); determine necessary action.

10. Inspect hydraulic or mechanical lifters; determine necessary action.

11. Adjust valves (mechanical or hydraulic lifters).

12. Inspect camshaft drives (including gear wear and backlash, sprocket and chain wear); determine necessary action.
13. Inspect and replace timing belts (chains), overhead camdrive sprockets, and tensioners; check belt/chain tension; adjust as necessary. P-1

15. Inspect camshaft bearing surface for wear, damage, out-of-round, and alignment; determine necessary action. P-3

16. Establish camshaft(s) timing and cam sensor indexing according to manufacturer’s specifications and procedures. P-1

I. ENGINE REPAIR

C. Engine Block Assembly Diagnosis and Repair

1. Disassemble engine block; clean and prepare components for inspection and reassembly. P-2

2. Inspect engine block for visible cracks, passage condition, core and gallery plug condition, and surface warpage; determine necessary action. P-1

3. Perform common fastener and thread repair to include: remove broken bolt, restore internal and external threads, and repair internal threads with thread insert. P-1

4. Inspect and measure cylinder walls/sleeves for damage, wear, and ridges; determine necessary action. P-2

5. Deglaze and clean cylinder walls. P-2

6. Inspect and measure camshaft bearings for wear, damage, out-of-round, and alignment; determine necessary action. P-3

7. Inspect crankshaft for end play, straightness, journal damage, keyway damage, thrust flange and sealing surface condition, and visual surface cracks; check oil passage condition; measure journal wear; check crankshaft sensor reluctor ring (where applicable); determine necessary action. P-2

8. Inspect main and connecting rod bearings for damage and wear; determine necessary action. P-2

9. Identify piston and bearing wear patterns that indicate connecting rod alignment and main bearing bore problems; determine necessary action. P-3
10. Inspect and measure pistons; determine necessary action. P-2

11. Remove and replace piston pin. P-3

12. Inspect, measure, and install piston rings. P-2

13. Inspect auxiliary (balance, intermediate, idler, counterbalance or silencer) shaft(s); inspect shaft(s) and support bearings for damage and wear; determine necessary action; reinstall and time. P-2

14. Inspect or replace crankshaft vibration damper (harmonic balancer). P-3

15. Assemble engine block assembly. P-1

I. ENGINE REPAIR

D. Lubrication and Cooling Systems Diagnosis and Repair

1. Perform oil pressure tests; determine necessary action. P-1

2. Inspect oil pump gears or rotors, housing, pressure relief devices, and pump drive; perform necessary action. P-2

3. Perform cooling system pressure tests; check coolant condition; inspect and test radiator, pressure cap, coolant recovery tank, and hoses; determine necessary action. P-1

4. Inspect, replace, and adjust drive belts, tensioners, and pulleys; check pulley and belt alignment. P-1

5. Inspect and replace engine cooling and heater system hoses. P-1

6. Inspect, test, and replace thermostat and gasket. P-1

7. Test coolant; drain and recover coolant; flush and refill cooling system with recommended coolant; bleed air as required. P-1

8. Inspect, test, remove, and replace water pump. P-1

9. Remove and replace radiator. P-2

10. Inspect, and test fans(s) (electrical or mechanical), fan clutch, fan shroud, and air dams. P-1

11. Inspect auxiliary oil coolers; determine necessary action. P-3
12. Inspect, test, and replace oil temperature and pressure switches and sensors.
13. Perform oil and filter change.

AUTOMATIC TRANSMISSION AND TRANSAXLE

For every task in Automatic Transmission and Transaxle, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

II. AUTOMATIC TRANSMISSION AND TRANSAXLE

A. General Transmission and Transaxle Diagnosis

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction.
2. Identify and interpret transmission/transaxle concern; assure proper engine operation; determine necessary action.
3. Research applicable vehicle and service information, such as transmission/transaxle system operation, fluid type, vehicle service history, service precautions, and technical service bulletins.
4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, and calibration decals).
5. Diagnose fluid loss and condition concerns; check fluid level on transmissions with and without dip-stick; determine necessary action.
6. Perform pressure tests; determine necessary action.
7. Perform stall test; determine necessary action.
8. Perform lock-up converter system tests; determine necessary action.
9. Diagnose mechanical and vacuum control system concerns; determine necessary action.
10. Diagnose noise and vibration concerns; determine necessary action. \hspace{1cm} P-2

11. Diagnose transmission/transaxle gear reduction/multiplication concerns using driving, driven, and held member (power flow) principles. \hspace{1cm} P-1

12. Diagnose pressure concerns in a transmission using hydraulic principles (Pascal’s Law). \hspace{1cm} P-2

13. Diagnose electrical/electronical concerns using principles of electricity (Ohm’s Law). \hspace{1cm} P-2

II. AUTOMATIC TRANSMISSION AND TRANSAXLE

B. Transmission and Transaxle Maintenance and Adjustment

1. Inspect, adjust or replace throttle valve (TV) linkages or cables; manual shift linkages or cables; transmission range sensor; check gear select indicator (as applicable). \hspace{1cm} P-1

2. Service transmission; perform visual inspection; replace fluids and filters. \hspace{1cm} P-1

II. AUTOMATIC TRANSMISSION AND TRANSAXLE

C. In-Vehicle Transmission and Transaxle Repair

1. Inspect, adjust or replace (as applicable) vacuum modulator; inspect and repair or replace lines and hoses. \hspace{1cm} P-3

2. Inspect, repair, and replace governor assembly. \hspace{1cm} P-3

3. Inspect and replace external seals and gaskets. \hspace{1cm} P-2

4. Inspect extension housing, bushings and seals; perform necessary action. \hspace{1cm} P-3

5. Inspect and replace speedometer drive gear, driven gear, vehicle speed sensor (VSS), and retainers. \hspace{1cm} P-2

6. Diagnose electronic transmission control systems using a scan tool; determine necessary action. \hspace{1cm} P-1

7. Inspect, replace, and align powertrain mounts. \hspace{1cm} P-2
II. AUTOMATIC TRANSMISSION AND TRANSAXLE

D. Off-Vehicle Transmission and Transaxle Repair

1. Removal, Disassembly, and Reinstallation

1. Remove and reinstall transmission and torque converter (rear-wheel drive). P-2
2. Remove and reinstall transaxle and torque converter assembly. P-1
3. Disassemble, clean, and inspect transmission/transaxle. P-1
4. Inspect, measure, clean, and replace valve body (includes surfaces, bores, springs, valves, sleeves, retainers, brackets, check-balls, screens, spacers, and gaskets). P-2
5. Inspect servo bore, piston, seals, pin, spring, and retainers; determine necessary action. P-3
6. Inspect accumulator bore, piston, seals, spring, and retainer; determine necessary action. P-3
7. Assemble transmission/transaxle. P-1
8. Inspect, leak test, and flush cooler, lines, and fittings. P-1

2. Oil Pump and Converter

1. Inspect converter flex plate, attaching parts, pilot, pump drive, and seal areas. P-2
2. Measure torque converter endplay and check for interference; check stator clutch. P-2
3. Inspect, measure, and reseal oil pump assembly and components. P-1

3. Gear Train, Shafts, Bushings and Case

1. Measure endplay or preload; determine necessary action. P-1
2. Inspect, measure, and replace thrust washers and bearings. P-2
3. Inspect oil delivery seal rings, ring grooves, and sealing surface areas. P-2
4. Inspect bushings; determine necessary action. P-2
5. Inspect and measure planetary gear assembly (includes sun, ring gear, thrust washers, planetary gears, and carrier assembly); determine necessary action.

6. Inspect case bores, passages, bushings, vents, and mating surfaces; determine necessary action.

7. Inspect transaxle drive, link chains, sprockets, gears, bearings, and bushings; perform necessary action.

8. Inspect, measure, repair, adjust or replace transaxle final drive components.

9. Inspect and reinstall parking pawl, shaft, spring, and retainer; determine necessary action.

4. Friction and Reaction Units

1. Inspect clutch drum, piston, check-balls, springs, retainers, seals, and friction and pressure plates; determine necessary action.

2. Measure clutch pack clearance; determine necessary action.

3. Air test operation of clutch and servo assemblies.

4. Inspect roller and sprag clutch, races, rollers, sprags, springs, cages, and retainers; determine necessary action.

5. Inspect bands and drums; determine necessary action.
MANUAL DRIVE TRAIN AND AXLES

For every task in Manual Drive Train and Axles, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

III. MANUAL DRIVE TRAIN AND AXLES

A. General Drive Train Diagnosis

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction. P-1

2. Identify and interpret drive train concern; determine necessary action. P-1

3. Research applicable vehicle and service information, such as drive train system operation, fluid type, vehicle service history, service precautions, and technical service bulletins. P-1

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, calibration decals). P-1

5. Diagnose fluid loss, level, and condition concerns; determine necessary action. P-1

6. Drain and fill manual transmission/transaxle and final drive unit. P-1

III. MANUAL DRIVE TRAIN AND AXLES

B. Clutch Diagnosis and Repair

1. Diagnose clutch noise, binding, slippage, pulsation, and chatter; determine necessary action. P-1

2. Inspect clutch pedal linkage, cables, automatic adjuster mechanisms, brackets, bushings, pivots, and springs; perform necessary action. P-1

3. Inspect hydraulic clutch slave and master cylinders, lines, and hoses; determine necessary action. P-1

4. Inspect release (throw-out) bearing, lever, and pivot; determine necessary action. P-1
5. Inspect and replace clutch pressure plate assembly and clutch disc. P-1
6. Bleed clutch hydraulic system. P-1
7. Inspect, remove or replace pilot bearing or bushing (as applicable). P-1
8. Inspect flywheel and ring gear for wear and cracks, determine necessary action. P-1
9. Inspect engine block, clutch (bell) housing, transmission/transaxle case mating surfaces, and alignment dowels; determine necessary action. P-3
10. Measure flywheel runout and crankshaft endplay; determine necessary action. P-2

III. MANUAL DRIVE TRAIN AND AXLES

C. Transmission/Transaxle Diagnosis and Repair

1. Remove and reinstall transmission/transaxle. P-1
2. Disassemble, clean, and reassemble transmission/transaxle components. P-1
3. Inspect transmission/transaxle case, extension housing, case mating surfaces, bores, bushings, and vents; perform necessary action. P-3
4. Diagnose noise, hard shifting, jumping out of gear, and fluid leakage concerns; determine necessary action. P-2
5. Inspect, adjust, and reinstall shift linkages, brackets, bushings, cables, pivots, and levers. P-2
6. Inspect and reinstall powertrain mounts. P-2
7. Inspect and replace gaskets, seals, and sealants; inspect sealing surfaces. P-2
8. Remove and replace transaxle final drive. P-3
9. Inspect, adjust, and reinstall shift cover, forks, levers, grommets, shafts, sleeves, detent mechanism, interlocks, and springs. P-2
10. Measure endplay or preload (shim or spacer selection procedure) on transmission/transaxle shafts; perform necessary action.

11. Inspect and reinstall synchronizer hub, sleeve, keys (inserts), springs, and blocking rings.

12. Inspect and reinstall speedometer drive gear, driven gear, vehicle speed sensor (VSS), and retainers.

13. Diagnose transaxle final drive assembly noise and vibration concerns; determine necessary action.

14. Remove, inspect, measure, adjust, and reinstall transaxle final drive pinion gears (spiders), shaft, side gears, side bearings, thrust washers, and case assembly.

15. Inspect lubrication devices (oil pump or slingers); perform necessary action.

16. Inspect, test, and replace transmission/transaxle sensors and switches.

III. MANUAL DRIVE TRAIN AND AXLES

D. Drive Shaft and Half Shaft, Universal and Constant-Velocity (CV) Joint Diagnosis and Repair

1. Diagnose constant-velocity (CV) joint noise and vibration concerns; determine necessary action.

2. Diagnose universal joint noise and vibration concerns; perform necessary action.

3. Remove and replace front wheel drive (FWD) front wheel bearing.

4. Inspect, service, and replace shafts, yokes, boots, and CV joints.

5. Inspect, service, and replace shaft center support bearings.

6. Check shaft balance and phasing; measure shaft runout; measure and adjust driveline angles.
III. MANUAL DRIVE TRAIN AND AXLES

E. Drive Axle Diagnosis and Repair

1. Ring and Pinion Gears and Differential Case Assembly

1. Diagnose noise and vibration concerns; determine necessary action. P-2
2. Diagnose fluid leakage concerns; determine necessary action. P-1
3. Inspect and replace companion flange and pinion seal; measure companion flange runout. P-2
4. Inspect ring gear and measure runout; determine necessary action. P-2
5. Remove, inspect, and reinstall drive pinion and ring gear, spacers, sleeves, and bearings. P-2
6. Measure and adjust drive pinion depth. P-2
7. Measure and adjust drive pinion bearing preload. P-2
8. Measure and adjust side bearing preload and ring and pinion gear total backlash and backlash variation on a differential carrier assembly (threaded cup or shim types). P-2
9. Check ring and pinion tooth contact patterns; perform necessary action. P-2
10. Disassemble, inspect, measure, and adjust or replace differential pinion gears (spiders), shaft, side gears, side bearings, thrust washers, and case. P-2
11. Reassemble and reinstall differential case assembly; measure runout; determine necessary action. P-2

2. Limited Slip Differential

1. Diagnose noise, slippage, and chatter concerns; determine necessary action. P-3
2. Clean and inspect differential housing; refill with correct lubricant. P-2
3. Inspect and reinstall clutch (cone or plate) components. P-3
4. Measure rotating torque; determine necessary action. P-3
3. Drive Axle Shaft

1. Diagnose drive axle shafts, bearings, and seals for noise, vibration, and fluid leakage concerns; determine necessary action. P-2

2. Inspect and replace drive axle shaft wheel studs. P-1

3. Remove and replace drive axle shafts. P-1

4. Inspect and replace drive axle shaft seals, bearings, and retainers. P-2

5. Measure drive axle flange runout and shaft endplay; determine necessary action. P-2

III. MANUAL DRIVE TRAIN AND AXLES

F. Four-wheel Drive/All-wheel Drive Component Diagnosis and Repair

1. Diagnose noise, vibration, and unusual steering concerns; determine necessary action. P-3

2. Inspect, adjust, and repair shifting controls (mechanical, electrical, and vacuum), bushings, mounts, levers, and brackets. P-3

3. Remove and reinstall transfer case. P-3

4. Disassemble, service, and reassemble transfer case and components. P-3

5. Inspect front-wheel bearings and locking hubs; perform necessary action. P-3

6. Check drive assembly seals and vents; check lube level. P-3

7. Diagnose, test, adjust, and replace electrical/electronic components of four-wheel drive systems. P-3
SUSPENSION AND STEERING

For every task in Suspension and Steering, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

IV. SUSPENSION AND STEERING

A. General Suspension and Steering Systems Diagnosis

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction.

2. Identify and interpret suspension and steering concern; determine necessary action.

3. Research applicable vehicle and service information, such as suspension and steering system operation, vehicle service history, service precautions, and technical service bulletins.

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, calibration decals).

B. Steering Systems Diagnosis and Repair

1. Disable and enable supplemental restraint system (SRS).

2. Remove and replace steering wheel; center/time supplemental restraint system (SRS) coil (clock spring).

3. Diagnose steering column noises, looseness, and binding concerns (including tilt mechanisms); determine necessary action.

4. Diagnose power steering gear (non-rack and pinion) binding, uneven turning effort, looseness, hard steering, noise, and fluid leakage concerns; determine necessary action.
5. Diagnose power steering gear (rack and pinion) binding, uneven turning effort, looseness, hard steering, noise, and fluid leakage concerns; determine necessary action.

6. Inspect steering shaft universal-joint(s), flexible coupling(s), collapsible column, lock cylinder mechanism, and steering wheel; perform necessary action.

7. Adjust manual or power non-rack and pinion worm bearing preload and sector lash.

8. Remove and replace manual or power rack and pinion steering gear; inspect mounting bushings and brackets.

9. Inspect and replace manual or power rack and pinion steering gear inner tie rod ends (sockets) and bellows boots.

10. Determine proper power steering fluid type; inspect fluid level and condition.

11. Flush, fill, and bleed power steering system.

12. Diagnose power steering fluid leakage; determine necessary action.

13. Remove, inspect, replace, and adjust power steering pump belt.

14. Remove and reinstall power steering pump.

15. Remove and reinstall power steering pump pulley; check pulley and belt alignment.

16. Inspect and replace power steering hoses and fittings.

17. Inspect and replace pitman arm, relay (centerlink/intermediate) rod, idler arm and mountings, and steering linkage damper.

18. Inspect, replace, and adjust tie rod ends (sockets), tie rod sleeves, and clamps.

19. Test and diagnose components of electronically controlled steering systems using a scan tool; determine necessary action.

20. Inspect and test non-hydraulic electric power assist steering.
21. Identify hybrid vehicle power steering system electrical circuits, service and safety precautions.

IV. SUSPENSION AND STEERING

C. Suspension Systems Diagnosis and Repair

1. Front Suspension

1. Diagnose short and long arm suspension system noises, body sway, and uneven riding height concerns; determine necessary action. P-1

2. Diagnose strut suspension system noises, body sway, and uneven riding height concerns; determine necessary action. P-1

3. Remove, inspect, and install upper and lower control arms, bushings, shafts, and rebound bumpers. P-3

4. Remove, inspect and install strut rods (compression/tension) and bushings. P-2

5. Remove, inspect, and install upper and/or lower ball joints. P-1

6. Remove, inspect, and install steering knuckle assemblies. P-2

7. Remove, inspect, and install short and long arm suspension system coil springs and spring insulators. P-3

8. Remove, inspect, install, and adjust suspension system torsion bars; inspect mounts. P-3

9. Remove, inspect, and install stabilizer bar bushings, brackets, and links. P-2

10. Remove, inspect, and install strut cartridge or assembly, strut coil spring, insulators (silencers), and upper strut bearing mount. P-1

11. Lubricate suspension and steering systems. P-2

2. Rear Suspension

1. Remove, inspect, and install coil springs and spring insulators. P-2

2. Remove, inspect, and install transverse links, control arms, bushings, and mounts. P-2
3. Remove, inspect, and install leaf springs, leaf spring insulators (silencers), shackles, brackets, bushings, and mounts.

4. Remove, inspect, and install strut cartridge or assembly, strut coil spring, and insulators (silencers).

3. Miscellaneous Service

1. Inspect, remove, and replace shock absorbers.

2. Remove, inspect, and service or replace front and rear wheel bearings.

3. Test and diagnose components of electronically controlled suspension systems using a scan tool; determine necessary action.

IV. SUSPENSION AND STEERING

D. Wheel Alignment Diagnosis, Adjustment, and Repair

1. Diagnose vehicle wander, drift, pull, hard steering, bump steer, memory steer, torque steer, and steering return concerns; determine necessary action.

2. Perform prealignment inspection; perform necessary action.

3. Measure vehicle riding height; determine necessary action.

4. Check and adjust front and rear wheel camber; perform necessary action.

5. Check and adjust caster; perform necessary action.

6. Check and adjust front wheel toe and center steering wheel.

7. Check toe-out-on-turns (turning radius); determine necessary action.

8. Check SAI (steering axis inclination) and included angle; determine necessary action.

9. Check and adjust rear wheel toe.

10. Check rear wheel thrust angle; determine necessary action.

11. Check for front wheel setback; determine necessary action.

12. Check front cradle (subframe) alignment; determine necessary action.
IV. SUSPENSION AND STEERING

E. Wheel and Tire Diagnosis and Repair

1. Diagnose tire wear patterns; determine necessary action. P-1
2. Inspect tires; check and adjust air pressure. P-1
3. Diagnose wheel/tire vibration, shimmy, and noise; determine necessary action. P-2
4. Rotate tires according to manufacturer’s recommendations. P-1
5. Measure wheel, tire, axle, and hub runout; determine necessary action. P-2
6. Diagnose tire pull (lead) problem; determine necessary action. P-2
7. Balance wheel and tire assembly (static and dynamic). P-1
8. Dismount, inspect, and remount tire on wheel. P-2
9. Dismount, inspect, and remount tire on wheel equipped with tire pressure sensor. P-3
10. Reinstall wheel; torque lug nuts. P-1
11. Inspect tire and wheel assembly for air loss; perform necessary action. P-1
12. Repair tire using internal patch. P-1
13. Inspect, diagnose, and calibrate tire pressure monitoring system. P-3
BRAKES

For every task in Brakes, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

V. BRAKES

A. General Brake Systems Diagnosis

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction.

2. Identify and interpret brake system concern; determine necessary action.

3. Research applicable vehicle and service information, such as brake system operation, vehicle service history, service precautions, and technical service bulletins.

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, calibration decals).

B. Hydraulic System Diagnosis and Repair

1. Diagnose pressure concerns in the brake system using hydraulic principles (Pascal’s Law).

2. Measure brake pedal height; determine necessary action.

3. Check master cylinder for internal and external leaks and proper operation; determine necessary action.

4. Remove, bench bleed, and reinstall master cylinder.

5. Diagnose poor stopping, pulling or dragging concerns caused by malfunctions in the hydraulic system; determine necessary action.

6. Inspect brake lines, flexible hoses, and fittings for leaks, dents, kinks, rust, cracks, bulging or wear; tighten loose fittings and supports; determine necessary action.

7. Fabricate and/or install brake lines (double flare and ISO types); replace
hoses, fittings, and supports as needed.

8. Select, handle, store, and fill brake fluids to proper level.

9. Inspect, test, and/or replace metering (hold-off), proportioning (balance), pressure differential, and combination valves.

10. Inspect, test, and adjust height (load) sensing proportioning valve.

11. Inspect, test, and/or replace components of brake warning light system.

12. Bleed (manual, pressure, vacuum or surge) brake system.

13. Flush hydraulic system.

V. BRAKES

C. Drum Brake Diagnosis and Repair

1. Diagnose poor stopping, noise, vibration, pulling, grabbing, dragging or pedal pulsation concerns; determine necessary action.

2. Remove, clean (using proper safety procedures), inspect, and measure brake drums; determine necessary action.

3. Refinish brake drum.

4. Remove, clean, and inspect brake shoes, springs, pins, clips, levers, adjusters/self-adjusters, other related brake hardware, and backing support plates; lubricate and reassemble.

5. Remove, inspect, and install wheel cylinders.

6. Pre-adjust brake shoes and parking brake before installing brake drums or drum/hub assemblies and wheel bearings.

7. Install wheel, torque lug nuts, and make final checks and adjustments.

V. BRAKES

D. Disc Brake Diagnosis and Repair

1. Diagnose poor stopping, noise, vibration, pulling, grabbing, dragging or pedal pulsation concerns; determine necessary action.

2. Remove caliper assembly from mountings; clean and inspect for leaks and
damage to caliper housing; determine necessary action.

3. Clean and inspect caliper mounting and slides for wear and damage; determine necessary action.
 P-1

4. Remove, clean, and inspect pads and retaining hardware; determine necessary action.
 P-1

5. Disassemble and clean caliper assembly; inspect parts for wear, rust, scoring, and damage; replace seal, boot, and damaged or worn parts.
 P-2

6. Reassemble, lubricate, and reinstall caliper, pads, and related hardware; seat pads, and inspect for leaks.
 P-1

7. Clean, inspect, and measure rotor with a dial indicator and a micrometer; follow manufacturer’s recommendations in determining need to machine or replace.
 P-1

8. Remove and reinstall rotor.
 P-1

9. Refinish rotor on vehicle.
 P-1

10. Refinish rotor off vehicle.
 P-1

11. Adjust calipers equipped with an integrated parking brake system.
 P-3

12. Install wheel, torque lug nuts, and make final checks and adjustments.
 P-1

V. BRAKES

E. Power Assist Units Diagnosis and Repair

1. Test pedal free travel with and without engine running; check power assist operation.
 P-2

2. Check vacuum supply (manifold or auxiliary pump) to vacuum-type power booster.
 P-2

3. Inspect the vacuum-type power booster unit for vacuum leaks; inspect the check valve for proper operation; determine necessary action.
 P-2

4. Inspect and test hydraulically assisted power brake system for leaks and proper operation; determine necessary action.
 P-3

5. Measure and adjust master cylinder pushrod length.
 P-3

V. BRAKES
F. Miscellaneous (Wheel Bearings, Parking Brakes, Electrical, Etc.)
Diagnosis and Repair

1. Diagnose wheel bearing noises, wheel shimmy, and vibration concerns; determine necessary action. P-1
2. Remove, clean, inspect, repack, and install wheel bearings and replace seals; install hub and adjust wheel bearings. P-1
3. Check parking brake cables and components for wear, rusting, binding, and corrosion; clean, lubricate, or replace as needed. P-2
4. Check parking brake operation; determine necessary action. P-1
5. Check operation of parking brake indicator light system. P-3
6. Check operation of brake stop light system; determine necessary action. P-1
7. Replace wheel bearing and race. P-1
8. Inspect and replace wheel studs. P-1
9. Remove and reinstall sealed wheel bearing assembly. P-2

V. BRAKES

G. Antilock Brake and Traction Control Systems

1. Identify and inspect antilock brake system (ABS) components; determine necessary action. P-1
2. Diagnose poor stopping, wheel lock-up, abnormal pedal feel or pulsation, and noise concerns caused by the antilock brake system (ABS); determine necessary action. P-2
3. Diagnose antilock brake system (ABS) electronic control(s) and components using self-diagnosis and/or recommended test equipment; determine necessary action. P-1
4. Depressurize high-pressure components of the antilock brake system (ABS). P-3
5. Bleed the antilock brake system’s (ABS) front and rear hydraulic circuits. P-2
6. Remove and install antilock brake system (ABS) electrical/electronic and...
hydraulic components.

7. Test, diagnose and service ABS speed sensors, toothed ring (tone wheel), and circuits using a graphing multimeter (GMM)/digital storage oscilloscope (DSO) (includes output signal, resistance, shorts to voltage/ground, and frequency data).

8. Diagnose antilock brake system (ABS) braking concerns caused by vehicle modifications (tire size, curb height, final drive ratio, etc.).

9. Identify traction control/vehicle stability control system components.

ELECTRICAL/ELECTRONIC SYSTEMS

For every task in Electrical/Electronic Systems, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

VI. **ELECTRICAL/ELECTRONIC SYSTEMS**

A. General Electrical System Diagnosis

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction.

2. Identify and interpret electrical/electronic system concern; determine necessary action.

3. Research applicable vehicle and service information, such as electrical/electronic system operation, vehicle service history, service precautions, and technical service bulletins.

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, and calibration decals).

6. Use wiring diagrams during diagnosis of electrical circuit problems.
7. Demonstrate the proper use of a digital multimeter (DMM) during diagnosis of electrical circuit problems.

8. Check electrical circuits with a test light; determine necessary action.

9. Measure source voltage and perform voltage drop tests in electrical/electronic circuits using a voltmeter; determine necessary action.

10. Measure current flow in electrical/electronic circuits and components using an ammeter; determine necessary action.

11. Check continuity and measure resistance in electrical/electronic circuits and components using an ohmmeter; determine necessary action.

12. Check electrical circuits using fused jumper wires; determine necessary action.

13. Locate shorts, grounds, opens, and resistance problems in electrical/electronic circuits; determine necessary action.

14. Measure and diagnose the cause(s) of excessive key-off battery drain (parasitic draw); determine necessary action.

15. Inspect and test fusible links, circuit breakers, and fuses; determine necessary action.

16. Inspect and test switches, connectors, relays, solenoid solid state devices, and wires of electrical/electronic circuits; perform necessary action.

17. Remove and replace terminal end from connector

18. Repair connectors and terminal ends.

19. Repair wiring harness (including CAN/BUS systems).

20. Perform solder repair of electrical wiring.

21. Identify location of hybrid vehicle high voltage circuit disconnect (service plug) location and safety procedures

VI. ELECTRICAL/ELECTRONIC SYSTEMS

B. Battery Diagnosis and Service

1. Perform battery state-of-charge test; determine necessary action.
2. Perform battery capacity test (or conductance test); confirm proper battery capacity for vehicle application; determine necessary action. P-1

3. Maintain or restore electronic memory functions. P-1

4. Inspect, clean, fill, and replace battery. P-1

5. Perform slow/fast battery charge. P-2

6. Inspect and clean battery cables, connectors, clamps, and hold-downs; repair or replace as needed. P-1

7. Start a vehicle using jumper cables and a battery or auxiliary power supply. P-1

8. Identify high voltage circuits of electric or hybrid electric vehicle and related safety precautions. P-3

9. Identify electronic modules, security systems and/or radios that require reinitialization or code entry following battery disconnect. P-2

10. Identify hybrid vehicle auxiliary (12v) battery service, repair and test procedures. P-3

VI. ELECTRICAL/ELECTRONIC SYSTEMS

C. Starting System Diagnosis and Repair

1. Perform starter current draw tests; determine necessary action. P-1

2. Perform starter circuit voltage drop tests; determine necessary action. P-1

3. Inspect and test starter relays and solenoids; determine necessary action. P-2

4. Remove and install starter in a vehicle. P-1

5. Inspect and test switches, connectors, and wires of starter control circuits; perform necessary action. P-2

6. Differentiate between electrical and engine mechanical problems that cause a slow-crank or no-crank condition. P-2

VI. ELECTRICAL/ELECTRONIC SYSTEMS

D. Charging System Diagnosis and Repair
1. Perform charging system output test; determine necessary action.
2. Diagnose charging system for the cause of undercharge, no-charge, and overcharge conditions.
3. Inspect, adjust, or replace generator (alternator) drive belts, pulleys, and tensioners; check pulley and belt alignment.
4. Remove, inspect, and install generator (alternator).
5. Perform charging circuit voltage drop tests; determine necessary action.

VI. ELECTRICAL/ELECTRONIC SYSTEMS

E. Lighting Systems Diagnosis and Repair

1. Diagnose the cause of brighter than normal, intermittent, dim, or no light operation; determine necessary action.
2. Inspect, replace, and aim headlights and bulbs.
3. Inspect and diagnose incorrect turn signal or hazard light operation; perform necessary action.
4. Identify system voltage and safety precautions associated with high intensity discharge headlights.

VI. ELECTRICAL/ELECTRONIC SYSTEMS

F. Gauges, Warning Devices, and Driver Information Systems Diagnosis and Repair

1. Inspect and test gauges and gauge sending units for cause of intermittent, high, low, or no gauge readings; determine necessary action.
2. Inspect and test connectors, wires, and printed circuit boards of gauge circuits; determine necessary action.
3. Diagnose the cause of incorrect operation of warning devices and other driver information systems; determine necessary action.
4. Inspect and test sensors, connectors, and wires of electronic (digital) instrument circuits; determine necessary action.
G. Horn and Wiper/Washer Diagnosis and Repair

1. Diagnose incorrect horn operation; perform necessary action. P-2
2. Diagnose incorrect wiper operation; diagnose wiper speed control and park problems; perform necessary action. P-2
3. Diagnose incorrect washer operation; perform necessary action. P-2

VI. ELECTRICAL/ELECTRONIC SYSTEMS

H. Accessories Diagnosis and Repair

1. Diagnose incorrect operation of motor-driven accessory circuits; determine necessary action. P-2
2. Diagnose incorrect heated glass, mirror, or seat operation; determine necessary action. P-2
3. Diagnose incorrect electric lock operation; determine necessary action. P-2
4. Diagnose incorrect operation of cruise control systems; determine necessary action. P-3
5. Diagnose supplemental restraint system (SRS) concerns; determine necessary action. (Note: Follow manufacturer’s safety procedures to prevent accidental deployment.) P-1
6. Disarm and enable the airbag system for vehicle service. P-1
7. Diagnose radio static and weak, intermittent, or no radio reception; determine necessary action. P-3
8. Remove and reinstall door panel. P-1
9. Diagnose body electronic system circuits using a scan tool; determine necessary action. P-2
10. Check for module communication (including CAN/BUS systems) errors using a scan tool. P-3
11. Diagnose the cause of false, intermittent, or no operation of anti-theft systems. P-2

HEATING AND AIR CONDITIONING
For every task in Heating and Air Conditioning, the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

VII. HEATING AND AIR CONDITIONING

A. A/C System Diagnosis and Repair

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction. P-1

2. Identify and interpret heating and air conditioning concern; determine necessary action. P-1

3. Research applicable vehicle and service information, such as heating and air conditioning system operation, vehicle service history, service precautions, and technical service bulletins. P-1

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, calibration decals). P-1

5. Performance test A/C system; diagnose A/C system malfunctions using principles of refrigeration. P-1

6. Diagnose abnormal operating noises in the A/C system; determine necessary action. P-2

7. Identify refrigerant type; select and connect proper gauge set; record pressure readings. P-1

8. Leak test A/C system; determine necessary action. P-1

9. Inspect the condition of discharged oil; determine necessary action. P-2

10. Determine recommended oil for system application. P-1

11. Using scan tool, observe and record related HVAC data and trouble codes. P-1

VII. HEATING AND AIR CONDITIONING

B. Refrigeration System Component Diagnosis and Repair
1. Compressor and Clutch

1. Diagnose A/C system conditions that cause the protection devices (pressure, thermal, and PCM) to interrupt system operation; determine necessary action. P-2

2. Inspect and replace A/C compressor drive belts; determine necessary action. P-1

3. Inspect, test, and/or replace A/C compressor clutch components and/or assembly. P-2

4. Remove, inspect, and reinstall A/C compressor and mountings; determine required oil quantity. P-1

5. Identify hybrid vehicle AC system electrical circuits, service and safety precautions. P-3

2. Evaporator, Condenser, and Related Components

1. Determine need for an additional A/C system filter; perform necessary action. P-3

2. Remove and inspect A/C system mufflers, hoses, lines, fittings, O-rings, seals, and service valves; perform necessary action. P-2

3. Inspect A/C condenser for airflow restrictions; perform necessary action. P-1

4. Remove, inspect, and reinstall receiver/drier or accumulator/drier; determine required oil quantity. P-1

5. Remove and install expansion valve or orifice (expansion) tube. P-1

6. Inspect evaporator housing water drain; perform necessary action. P-3

7. Remove, inspect, and reinstall evaporator; determine required oil quantity. P-3

8. Remove, inspect, and reinstall condenser; determine required oil quantity. P-3

VII. HEATING AND AIR CONDITIONING

C. Heating, Ventilation, and Engine Cooling Systems Diagnosis and Repair

1. Diagnose temperature control problems in the heater/ventilation system; determine necessary action. P-2

2. Perform cooling system pressure tests; check coolant condition, inspect and P-1
test radiator, pressure cap, coolant recovery tank, and hoses; perform necessary action.

3. Inspect engine cooling and heater system hoses and belts; perform necessary action. P-1

4. Inspect, test, and replace thermostat and gasket. P-1

5. Determine coolant condition and coolant type for vehicle application; drain and recover coolant. P-1

6. Flush system; refill system with recommended coolant; bleed system. P-1

7. Inspect and test cooling fan, fan clutch, fan shroud, and air dams; perform necessary action. P-1

8. Inspect and test electric cooling fan, fan control system and circuits; determine necessary action. P-1

9. Inspect and test heater control valve(s); perform necessary action. P-2

10. Remove, inspect, and reinstall heater core. P-3

VII. HEATING AND AIR CONDITIONING

D. Operating Systems and Related Controls Diagnosis and Repair

1. Diagnose malfunctions in the electrical controls of heating, ventilation, and A/C (HVAC) systems; determine necessary action. P-2

2. Inspect and test A/C-heater blower, motors, resistors, switches, relays, wiring, and protection devices; perform necessary action. P-1
3. Test and diagnose A/C compressor clutch control systems; determine necessary action.

4. Diagnose malfunctions in the vacuum, mechanical, and electrical components and controls of the heating, ventilation, and A/C (HVAC) system; determine necessary action.

5. Inspect and test A/C-heater control panel assembly; determine necessary action.

6. Inspect and test A/C-heater control cables, motors, and linkages; perform necessary action.

7. Inspect A/C-heater ducts, doors, hoses, cabin filters and outlets; perform necessary action.

8. Check operation of automatic and semi-automatic heating, ventilation, and air-conditioning (HVAC) control systems; determine necessary action.

VII. HEATING AND AIR CONDITIONING

E. Refrigerant Recovery, Recycling, and Handling

1. Perform correct use and maintenance of refrigerant handling equipment.

2. Identify (by label application or use of a refrigerant identifier) and recover A/C system refrigerant.

3. Recycle refrigerant.

4. Label and store refrigerant.

5. Test recycled refrigerant for non-condensable gases.

6. Evacuate and charge A/C system.
ENGINE PERFORMANCE

For every task in Engine Performance the following safety requirement must be strictly enforced:

Comply with personal and environmental safety practices associated with clothing; eye protection; hand tools; power equipment; proper ventilation; and the handling, storage, and disposal of chemicals/materials in accordance with local, state, and federal safety and environmental regulations.

VIII. ENGINE PERFORMANCE

A. General Engine Diagnosis

1. Complete work order to include customer information, vehicle identifying information, customer concern, related service history, cause, and correction. P-1

2. Identify and interpret engine performance concern; determine necessary action. P-1

3. Research applicable vehicle and service information, such as engine management system operation, vehicle service history, service precautions, and technical service bulletins. P-1

4. Locate and interpret vehicle and major component identification numbers (VIN, vehicle certification labels, and calibration decals). P-1

5. Inspect engine assembly for fuel, oil, coolant, and other leaks; determine necessary action. P-2

6. Diagnose abnormal engine noise or vibration concerns; determine necessary action. P-2

7. Diagnose abnormal exhaust color, odor, and sound; determine necessary action. P-2

8. Perform engine absolute (vacuum/boost) manifold pressure tests; determine necessary action. P-1

9. Perform cylinder power balance test; determine necessary action. P-1

10. Perform cylinder cranking compression tests; determine necessary action. P-1

11. Perform engine running compression test; determine necessary action. P-2
12. Perform cylinder leakage test; determine necessary action.

13. Diagnose engine mechanical, electrical, electronic, fuel, and ignition concerns with an oscilloscope and/or engine diagnostic equipment; determine necessary action.

14. Prepare 4 or 5 gas analyzer; inspect and prepare vehicle for test, and obtain exhaust readings; interpret readings, and determine necessary action.

15. Verify engine operating temperature; determine necessary action.

16. Perform cooling system pressure tests; check coolant condition; inspect and test radiator, pressure cap, coolant recovery tank, and hoses; perform necessary action.

17. Verify correct camshaft timing.

VIII. ENGINE PERFORMANCE

B. Computerized Engine Controls Diagnosis and Repair

1. Retrieve and record stored OBD I diagnostic trouble codes; clear codes.

2. Retrieve and record stored OBD II diagnostic trouble codes; clear codes when applicable.

3. Diagnose the causes of emissions or driveability concerns resulting from malfunctions in the computerized engine control system with stored diagnostic trouble codes.

4. Diagnose emissions or driveability concerns resulting from malfunctions in the computerized engine control system with no stored diagnostic trouble codes; determine necessary action.

5. Check for module communication (including CAN/BUS systems) errors using a scan tool.

6. Inspect and test computerized engine control system sensors, powertrain control module (PCM), actuators, and circuits using a graphing multimeter (GMM)/digital storage oscilloscope (DSO); perform necessary action.

7. Obtain and interpret scan tool data.

9. Diagnose driveability and emissions problems resulting from malfunctions of
interrelated systems (cruise control, security alarms, suspension controls, traction controls, A/C, automatic transmissions, non-OEM-installed accessories, or similar systems); determine necessary action.

10. Perform active tests of actuators using scan tool; determine necessary action.

VIII. ENGINE PERFORMANCE

C. Ignition System Diagnosis and Repair

1. Diagnose ignition system related problems such as no-starting, hard starting, engine misfire, poor driveability, spark knock, power loss, poor mileage, and emissions concerns on vehicles with electronic ignition (distributorless) systems; determine necessary action.

2. Diagnose ignition system related problems such as no-starting, hard starting, engine misfire, poor driveability, spark knock, power loss, poor mileage, and emissions concerns on vehicles with distributor ignition (DI) systems; determine necessary action.

3. Inspect and test ignition primary circuit wiring and solid state components; perform necessary action.

4. Inspect, test and service distributor.

5. Inspect and test ignition system secondary circuit wiring and components; perform necessary action.

6. Inspect and test ignition coil(s); perform necessary action.

7. Check and adjust ignition system timing and timing advance/retard (where applicable).

8. Inspect and test ignition system pick-up sensor or triggering devices; perform necessary action.

VIII. ENGINE PERFORMANCE

D. Fuel, Air Induction, and Exhaust Systems Diagnosis and Repair

1. Diagnose hot or cold no-starting, hard starting, poor driveability, incorrect idle speed, poor idle, flooding, hesitation, surging, engine misfire, power loss, stalling, poor mileage, dieseling, and emissions problems on vehicles with injection-type fuel systems; determine necessary action.

2. Check fuel for contaminants and quality; determine necessary action.
3. Inspect and test fuel pumps and pump control systems for pressure, regulation, and volume; perform necessary action.

4. Replace fuel filters.

5. Inspect and test cold enrichment system and components; perform necessary action.

6. Inspect throttle body, air induction system, intake manifold and gaskets for vacuum leaks and/or unmetered air.

7. Inspect and test fuel injectors.

8. Check idle speed.

9. Inspect the integrity of the exhaust manifold, exhaust pipes, muffler(s), catalytic converter(s), resonator(s), tail pipe(s), and heat shield(s); perform necessary action.

10. Perform exhaust system back-pressure test; determine necessary action.

11. Test the operation of turbocharger/supercharger systems; determine necessary action.

VIII. ENGINE PERFORMANCE

E. Emissions Control Systems Diagnosis and Repair

1. Positive Crankcase Ventilation

1. Diagnose oil leaks, emissions, and driveability problems resulting from malfunctions in the positive crankcase ventilation (PCV) system; determine necessary action.

2. Inspect, test and service positive crankcase ventilation (PCV) filter/breather cap, valve, tubes, orifices, and hoses; perform necessary action.

2. Exhaust Gas Recirculation

1. Diagnose emissions and driveability problems caused by malfunctions in the exhaust gas recirculation (EGR) system; determine necessary action.

2. Inspect, test, service and replace components of the EGR system, including EGR tubing, exhaust passages, vacuum/pressure controls, filters and hoses; perform necessary action.
3. Inspect and test electrical/electronic sensors, controls, and wiring of exhaust gas recirculation (EGR) systems; perform necessary action.

3. Exhaust Gas Treatment

1. Diagnose emissions and driveability problems resulting from malfunctions in the secondary air injection and catalytic converter systems; determine necessary action.

2. Inspect and test mechanical components of secondary air injection systems; perform necessary action.

3. Inspect and test electrical/electronically-operated components and circuits of air injection systems; perform necessary action.

4. Inspect and test catalytic converter performance.

4. Evaporative Emissions Controls

1. Diagnose emissions and driveability problems resulting from malfunctions in the evaporative emissions control system; determine necessary action.

2. Inspect and test components and hoses of evaporative emissions control system; perform necessary action.

3. Interpret evaporative emission related diagnostic trouble codes (DTCs); determine necessary action.

VIII. ENGINE PERFORMANCE

F. Engine Related Service

1. Adjust valves on engines with mechanical or hydraulic lifters.

2. Remove and replace timing belt; verify correct camshaft timing.

3. Remove and replace thermostat and gasket.

4. Inspect and test mechanical/electrical fans, fan clutch, fan shroud/ducting, air dams, and fan control devices; perform necessary action.

5. Perform common fastener and thread repairs to include: remove broken bolt, restore internal and external threads, and repair internal threads with thread insert.
6. Perform oil and filter change. P-1

7. Demonstrate proficiency in using oxy-acetylene torch to heat and cut metal. P-3

8. Identify hybrid vehicle internal combustion engine service precautions. P-3
Task List Priority Item Totals (by area)

I. Engine Repair
 P-1 = 25
 P-2 = 21
 P-3 = 11

II. Automatic Transmission and Transaxle
 P-1 = 19
 P-2 = 20
 P-3 = 8

III. Manual Drive Train and Axles
 P-1 = 26
 P-2 = 23
 P-3 = 16

IV. Suspension and Steering
 P-1 = 32
 P-2 = 20
 P-3 = 16

V. Brakes
 P-1 = 34
 P-2 = 14
 P-3 = 11

VI. Electrical/Electronic Systems
 P-1 = 38
 P-2 = 17
 P-3 = 9

VII. Heating and Air Conditioning
 P-1 = 29
 P-2 = 9
 P-3 = 10

VIII. Engine Performance
 P-1 = 39
 P-2 = 16
 P-3 = 11
APPLIED ACADEMICS AND WORKPLACE SKILLS

The following Applied Academic Skills general statements were developed in cooperation with the Vocational-Technical Education Consortium of States (V-TECS). The process involved using the NATEF task list and the Basic/Essential Skills Taxonomy developed at Arizona State University by Dr. Lester Snyder.

Committee meetings were held in the following four cities: Atlanta, Georgia; Boston, Massachusetts; Cincinnati, Ohio; and Phoenix, Arizona. At each of the meetings, ASE Certified Master Automobile technicians were used as experts in the automotive service industry. V-TECS used experts in three academic areas (language arts, mathematics, and science) to help the committees understand the specific definitions of the concepts used in the taxonomy.

The committees were asked to identify the academic skills required to perform each task listed in the eight automobile areas. Their responses were recorded using the Basic/Essential Skills Taxonomy codes and were put into a database. After all the meetings were completed, a composite or unduplicated list of the codes was generated for language arts, mathematics, and science. Specific statements related to the use of the academic skill in the automotive industry were then written. A matrix was built to show the relationship between the composite list and each of the eight automobile areas. The general statements included in this manual were developed from the specific statements. Several crosschecks and reviews were conducted to ensure the accuracy of the statement and the relationship to the NATEF task list.

The Workplace Skills List was generated by having the committees identify the workplace skills from the V-TECS/ILLINOIS WORKPLACE SKILLS LIST that are important for employment as an automobile technician.

** Please download the Applied Academics and Workplace Skills for Automobile Technicians book from the NATEF website or contact the office to order a copy. This book includes the unduplicated list of applied academic skills in all eight automobile areas, complete with statements of their use by automobile technicians; the matrix; the definitions of the Basic/Essential Skills codes; the general narrative statements; the Workplace Skills List; and the NATEF Task List.

The information in the book will provide a common vocabulary for instructors and administrators to use in achieving academic and vocational skill standards. This information can be used by programs to document the academic skills taught in automotive technical classes. The examples for teaching an academic concept in an applied context will also be useful for schools when planning, designing, or writing curricula. **
NARRATIVE FOR LANGUAGE ARTS RELATED ACADEMIC SKILLS
for all
NATEF Automobile Technician Task Lists

The automobile technician must be proficient in the following Language Arts and Communications related academic skills that are embedded in the occupation. Using these skills the technician must be able to:

- Request, collect, comprehend, evaluate, and apply oral and written information gathered from customers, associates, and supervisors regarding problem symptoms and potential solutions to problems.

- Identify the purpose for all written and oral communication and then choose the most effective strategies for listening, reading, speaking, and writing to facilitate the communication process.

- Adapt a reading strategy for all written materials, e.g. customer's notes, service manuals, shop manuals, technical bulletins, etc., relevant to problem identification, diagnosis, solution, and repair.

- Attend to verbal and nonverbal cues in discussions with customers, supervisors, and associates to verify, identify, and solve problems.

- Use study habits and techniques, i.e. previewing, scanning, skimming, taking notes, etc., when reviewing publications (shop manuals, references, databases, operator's manuals, and text resources) for problem solving, diagnosis, and repair.

- Use prior knowledge learned from solving similar problems to diagnose and repair specific problems.

- Write clear, concise, complete, and grammatically accurate sentences and paragraphs.

- Write warranty reports and work orders to include information regarding problem resolution and the results of the work performed for the customer or manufacturer.

- Comprehend and apply industry definitions and specifications to diagnose and solve problems in all automotive systems and components.

- Follow all oral/written directions that relate to the task or system under study.

- Comprehend and use problem-solving techniques and decision trees that are contained in service manuals to determine cause-and-effect relationships.
• Scan service manuals and databases to locate specific information for problem-solving purposes.

• Use the service manual to identify the manufacturer's specifications for system parameters, operation, and potential malfunctions.

• Interpret charts, tables, or graphs to determine the manufacturer's specifications for system operation to identify out-of-tolerance systems and subsystems.

• Supply clarifying information to customers, associates, parts supplier, and supervisors.
NARRATIVE FOR MATHEMATICS RELATED ACADEMIC SKILLS for all NATEF Automobile Technician Task Lists

The automobile technician must be proficient in the following mathematics-related academic skills that are embedded in the occupation. Given these skills the technician must be able to:

- Determine the proper sequence of arithmetic operations to arrive at a solution that can be compared to other specifications when comparing system measurements to the manufacturer's specifications.

- Add two or more whole numbers, fractions, or decimals to determine component conformance of multiple measurements with the manufacturer's specifications.

- Subtract whole numbers, fractions, or decimals to arrive at a difference for comparison with the manufacturer's specifications.

- Divide decimals to determine measurement conformance with the manufacturer's specifications.

- Convert variables presented orally to a mathematical form that provides for an algebraic solution.

- Estimate the results of basic arithmetic operations, and accurately round up or down depending on the appropriate rule for the situation.

- Analyze and solve problems requiring the use of fractions, decimals, ratios, or percentages by a direct or indirect variation of the numerical elements of the problem.

- Determine the irrelevant and/or missing data needed to solve a problem.

- Determine and interpret place value (tenths, hundredths, thousandths) when conducting precision measurements.

- Use Centigrade or Fahrenheit measurement scales to determine the existing temperature of substances such as a coolant or lubricant.

- Use English and metric volume measurement techniques to determine the volume of a system, component, or cylinder.

- Use conventional symbols (E for voltage, etc.) to solve circuit parameter calculations using formulas such as Ohm's Law, E=IR.
• Understand that if the described problem has certain conditions (symptoms), then a limited number of solutions to the problem apply.

• Understand the relationship between the frequency of the occurrence of a problem (symptom) and the probability of accurately predicting the problem.

• Calculate the average (mean) of several measurements to determine the variance from the manufacturer's specifications.

• Use English and metric angle and distance measurements and techniques to determine angle variances from the manufacturer’s specifications.

• Solve problems that involve determining the relative proportion of desired versus undesired ingredients or elements of a mixture, and determine if that proportion is within the manufacturer's specifications.

• Comprehend and use standards defined by each manufacturer for the system being analyzed.

• Convert test readings that are in decimal or fraction form to a ratio or percent for comparison with the manufacturer's specifications for the sub-system.

• Know when to use an estimated performance value versus an exact value, basing the decision on the system being analyzed or repaired.

• Visually perceive the geometric relationship of systems and sub-systems that require alignment.

• Construct or interpret a chart, table, graph, or symbol that depicts a range of performance characteristics that can be used for comparing various system operational conditions.

• Use measurement devices to determine the parallelism or perpendicularity of chassis, suspension, and other vehicle systems requiring geometric alignment.

• Use formulas to indirectly confirm systems that are outside of the manufacturer's specifications.

• Verify that the relationship between parallel lines and angles concurs with the manufacturer's specifications when diagnosing a system's malfunction.

• Visually formulate a belt (e.g., suspension/drive) angle and verify conformance to the manufacturer's specified angle.
• Measure timed or sequenced operating parameters to determine conformance with the manufacturer's specifications.

• Use English and metric scales to determine the conformance of components to the manufacturer's specified weight.

• Determine the degree of conformance to the manufacturer's specifications for length, volume, and other appropriate measurements in the English and/or metric system.

• Distinguish the congruence of the measured tolerances with those specified by the manufacturer.

• Measure and/or test with tools designed for English or metric measurements, then convert the result to the manufacturer's system used for specifying the correct measurement or tolerance.

• Compute mentally whether the observed measurement is out of tolerance when comparing the observed measurement to the manufacturer's specifications.

• Solve problems that involve determining whether the proportion of the existing volume compares to the manufacturer's specifications and is within the recommended tolerance.

• Distinguish whether a measurement or tolerance is equal or not equal to the manufacturer's specifications.
NARRATIVE FOR SCIENCE RELATED ACADEMIC SKILLS
for all
NATEF Automobile Technician Task Lists

The automobile technician must be proficient in the following science-related academic skills that are imbedded in the occupation. Using these skills the technician must be able to:

• Analyze and evaluate waste products from the repair task and dispose of the parts, residue, or trash according to applicable federal, state, and local rules and regulations.

• Follow all safety regulations and procedures while performing any task.

• Use the information provided in service manuals, charts, tables, or graphs to determine the manufacturer's specifications for system(s) operation(s) and the appropriate repair/replacement procedure.

• Develop a hypothesis regarding the cause of the problem and test the hypothesis to determine the solution to the problem.
 1. identify the problem
 2. gather information
 3. develop hypothesis
 4. take action
 5. check results

• Convert measurements taken using the English or metric system to specifications stated in terms of either system.

• Explain and demonstrate an understanding of the chemical reaction that occurs in an automobile regarding the combustion of fuels, catalytic converters, and contamination when introduced into systems.

• Explain the purpose of additives in lubricants.

• Demonstrate an understanding of the kinetic and potential energy relationships that occur in valve systems, ignition systems, and other stored energy systems, such as springs and fuels, and determine efficiency.

• Demonstrate an understanding of the role of balanced and unbalanced forces on linear and rotating vehicle assemblies.

• Explain the relationship of centrifugal/centripetal force to the failure of rotating systems.

• Explain the ignition characteristics of fuels resulting from varying levels of fractional distillation.
• Demonstrate an understanding of how fuel characteristics effect combustion in an automotive engine.

• Demonstrate an understanding of the effect of heat on automotive systems.

• Explain the concept of heat transfer in terms of conduction, convection, and radiation in automotive systems.

• Demonstrate an understanding of the expansion and contraction of system parts as a result of heat generated during use and the cooling of the system when not in operation.

• Demonstrate an understanding of the effect that adding heat will cause in a state of matter, such as solid to liquid to gas.

• Explain the role of insulation in maintaining stable temperatures.

• Demonstrate an understanding of refraction in fiber optic systems.

• Explain that dyes added to lubricants fluoresce in ultraviolet light and provide a process for determining the source of leakage.

• Demonstrate an understanding of the process of acceleration and deceleration as a function of weight and available power.

• Demonstrate an understanding of the reaction of fluid to the motion of a valve or piston.

• Demonstrate an understanding of the circular motion of a vehicle as it relates to such events as toe-out on turns and tracking.

• Demonstrate an understanding of the types of vibrations caused by out-of-balance or excessively worn systems.

• Explain to a customer how sound can be amplified due to resonant cavities and other physical characteristics of the vehicle.

• Explain and demonstrate an understanding of how sound generated in one place in the body and engine can be carried to other parts of the engine through metal and other materials.

• Explain the need for sound deadening and vibration damping materials to control the level of sound in the passenger compartment.

• Demonstrate an understanding of the relationship of the perceived intensity to the decibel level of a noise.
• Explain the relationship of the frequency of the sound to a normal or abnormally operating system.

• Explain and demonstrate an understanding of the role of listening to sounds as part of the trouble-shooting process.

• Explain that the presence of overtones may indicate changes in the vibrations of various systems.

• Demonstrate an understanding of the relationship of barometric pressure to engine performance (horsepower).

• Explain the relationship of engine torque to vehicle performance.

• Explain how levers and pulleys can be used to increase an applied force or distance.

• Identify the effect of the pH of a solution on chemical changes in a system.

• Identify the characteristics that define a system that is operating within the manufacturer's specifications.

• Use precision measuring devices to determine if wear and adjustments are within the manufacturer's specifications, and to assure that repair or replacement parts meet the manufacturer's specifications.

• Use tension gauges, such as a torque wrench, to measure the force or tension required to tighten connections to the manufacturer's specifications.

• Use a scale to measure component weight to balance rotating systems.

• Use pressure measuring tools to determine pressures in hydraulic or pneumatic systems and compare to the manufacturer's specifications.

• Use direct and indirect methods to measure system temperatures and then convert to Fahrenheit/Centigrade as required.

• Use direct and indirect methods to measure time and compare the results to the manufacturer's specifications.

• Use direct and indirect methods to measure the volume of liquids in a system and compare to the manufacturer's specifications.
• Use computer databases for information retrieval and input devices to process information for customers, billing purposes, warranty work, and other record-keeping purposes.

• Explain how an applied force at one location can be transmitted via fluid pressure to provide a force at a remote location.

• Explain catalytic converter principles which modify emission gases at the atomic level to provide a low level of HC, CO, and NOx in the final exhaust.

• Explain the role that friction plays in acceleration and deceleration of objects as illustrated by transmitting motion to a part not physically connected to the powered part.

• Explain to the customer the need for lubrication of adjacent parts to minimize friction as a result of movement at the junction of the parts.

• Explain the necessity of knowing that the hardness of a metal determines, in part, its function and location in the automobile.

• Explain the dynamic control properties of a hydraulic system.

• Explain the surface processes that occur on system seals due to the absorption of the contained materials.

• Demonstrate an understanding of how the deterioration in an engine's performance can be caused by a chemical reaction that occurs in a liquid that has been contaminated.

• Demonstrate an understanding of how torque relates to force and angular acceleration.

• Demonstrate an understanding of how cams, pulleys, and levers are used to multiply force or transfer directions of force.

• Explain how rotational motion is changed to linear motion and the need for balance in rotating systems.

• Demonstrate an understanding of how variances in flow rate in airflow sensors or cooling systems can effect engine performance.

Electrical/Tolerances

• Explain and demonstrate an understanding of the properties of electricity that impact the lighting, engine management, and other electrical systems in the vehicle.
• Demonstrate an understanding of the characteristics of a quality electrical ground and explain the problems associated with an inadequate electrical circuit ground.

• Explain voltage and current flow in series and parallel circuits.

• Demonstrate an understanding of the processes used to locate a short circuit in the electrical/electronic system.

• Demonstrate an understanding of the role of the alternator in maintaining battery and system voltage.

• Demonstrate an understanding of the role of solar panels in maintaining battery voltage and operating selected accessories.

• Explain and demonstrate an understanding of the ignition coil's role in generating the high voltages required to fire the sparkplug.

• Demonstrate an understanding of the correct procedure used to measure the electrical parameters of voltage, current, resistance, or power.

• Explain and demonstrate an understanding of the role of a fuse or fusible link as a protective device in an electrical or electronic circuit.

• Explain and demonstrate an understanding of the use of Ohm's Law in verifying circuit parameters (resistance, voltage, amperage).

• Explain and demonstrate an understanding of the relationship of resistance to heat, voltage drop, and circuit parameters.

• Explain and demonstrate an understanding of system voltage generation, uses, and characteristics.

• Demonstrate an understanding of the ion transfer process that occurs in an automotive battery.

• Explain the conductivity problems in a circuit when connectors corrode due to electrochemical reactions.

• Explain the relationship between electrical current in a conductor and the magnetic field produced in a coil such as the starter solenoid.

• Explain the ability of a coil to increase battery voltage to the level required to fire a spark plug.
• Explain the effect of magnetic fields on unshielded circuits in selected control modules.

• Explain the need for a specific gravity test of battery electrolyte to determine charge.

• Use precision electrical test equipment to measure current, voltage, resistance, continuity, and/or power.

• Demonstrate an understanding of the role of capacitance in timer circuits, such as RC timers or MAP sensors, where the changing manifold pressure causes two metal discs to act like a capacitor by sending varying voltage to the electronic engine control system.

• Demonstrate an understanding of the capacity of semiconductor devices to modify rapidly engine operation parameters depending on multiple inputs from engine operational sensors.

• Explain how the movement of a conductor in a magnetic field can generate electricity.

• Demonstrate an understanding of the role of mechanical transducers in sending electrical control signals to modify system operating characteristics.

• Demonstrate an understanding of the purpose of photocells and measurement processes relative to determining output.
WORKPLACE SKILLS

IDENTIFIED AS BEING IMPORTANT BY THE NATEF AUTOMOTIVE TECHNICIANS RELATED ACADEMIC SKILLS COMMITTEE FROM THE V-TECS/ILLINOIS WORKPLACE SKILLS LIST.

A. DEVELOPING AN EMPLOYMENT PLAN

1. Match interests to employment area.
2. Match aptitudes to employment area.
3. Identify short-term work goals.
4. Match attitudes to a job area.
5. Match physical capabilities to a job area.
6. Demonstrate a drug-free status.

B. SEEKING AND APPLYING FOR EMPLOYMENT OPPORTUNITIES

1. Identify steps in applying for a job.
2. Locate employment opportunities.
3. Identify job requirements.
4. Identify conditions for employment.
5. Evaluate job opportunities.
6. Prepare a resume.
7. Write job application letter.
8. Complete job application form.
10. Dress for job interview.

C. ACCEPTING EMPLOYMENT

1. Apply for social security number.
2. Complete state and federal tax forms.
D. COMMUNICATING ON THE JOB

1. Communicate orally with others.
2. Ask questions about task.
3. Follow written and oral directions.
4. Prepare written communication.
5. Interpret the use of body language.
6. Use telephone etiquette.

E. INTERPRETING THE ECONOMICS OF WORK

1. Describe responsibilities of an employee.
2. Describe responsibilities of employer or management.
3. Investigate opportunities and options for business ownership.

F. MAINTAINING PROFESSIONALISM

1. Participate in employment orientation.
2. Treat people with respect.
3. Exhibit positive behavior.
5. Comply with company dress and appearance standards.
6. Use job-related terminology.
7. Participate in meetings in a positive and constructive manner.
8. Assess business image and products/services.

G. ADAPTING/COPING WITH CHANGE

1. Identify the elements of the job transition.
2. Exhibit ability to handle stress.
3. Recognize need to change or quit a job.
4. Write a letter of resignation.

H. SOLVING PROBLEMS AND CRITICAL THINKING

1. Clarify purposes and goals.
2. Identify the problem.
3. Employ reasoning skills.
5. Evaluate options.
6. Estimate results of implemented options.
7. Set priorities.
8. Identify solutions to the problem and their impact.
9. Select and implement a solution to a problem.
10. Prioritize and organize workloads.

I. MAINTAINING A SAFE AND HEALTHY ENVIRONMENT

1. Follow conservation/environmental practices and policies.
2. Comply with safety and health rules/procedures.
3. Identify hazardous substances in the work place.
4. Use and maintain proper tools and equipment.
5. Maintain work area.
6. Act during emergencies.

J. DEMONSTRATING WORK ETHICS AND BEHAVIOR

1. Follow rules, regulations and policies as established.
2. Implement responsibilities of job position.
3. Maintain regular attendance.
4. Assume responsibility for decisions and actions.
5. Demonstrate willingness to learn.
6. Practice time management.
7. Practice cost effectiveness.
8. Apply ethical reasoning.
10. Display assertiveness.
11. Exhibit pride.

K. DEMONSTRATING TECHNOLOGY LITERACY

1. Demonstrate basic keyboarding skills.
2. Demonstrate basic knowledge of computing.
3. Recognize impact of technological changes on tasks and people.

L. MAINTAINING INTERPERSONAL RELATIONSHIPS

1. Value individual diversity.
2. Respond to praise or criticism.
3. Provide constructive praise or criticism.
4. Channel and control emotional reactions.
5. Resolve conflicts.
6. Display a positive attitude.
7. Identify and react to sexual intimidation/harassment.

M. DEMONSTRATING TEAMWORK

1. Identify style of leadership used in teamwork.
2. Match team member's skills and group activity.
3. Work with team members.
4. Complete a team task.
5. Evaluate outcomes.
TOOLS AND EQUIPMENT

Local employer needs and the availability of funds are key factors for determining each program’s structure and operation. The NATEF Standards recognize that not all programs have the same needs, nor do all programs teach 100% of the NATEF tasks. Therefore, the basic philosophy for the tools and equipment requirement is as follows: for all tasks which are taught in the program, the training should be as thorough as possible with the tools and equipment necessary for those tasks. In other words, if a program does not teach a particular task, the tool from the tool list associated with that task is not required (unless of course it is required for a task that is taught in another area). **NOTE: For programs certifying under the General Service Technician Program, there is a separate Tools & Equipment List. Please refer to the General Service Technician Program section in this manual.**

The NATEF tool lists are organized into three basic categories: **Hand Tools, General Lab/Shop Equipment,** and **Specialty Tools and Equipment.** The specialty tools section is further separated into the eight NATEF task categories. When referring to the tools and equipment list, please note the following:

1. The organization of the tool list is not intended to dictate how a program organizes its tool crib or student tool sets (i.e., which tools should be in a student set, if utilized, and which should be in the tool crib or shop area).
2. Quantities for each tool or piece of equipment are determined by the program needs; however, sufficient quantities to provide quality instruction should be on hand.
3. For **Specialty Tools and Equipment,** the program need only have those tools for the areas being certified.
4. Programs may meet the equipment requirements by borrowing special equipment or providing for off-site instruction (e.g., in a dealership or independent repair shop). Use of borrowed or off-site equipment must be appropriately documented.
5. No specific brand names for tools and equipment are specified or required.
6. Although the NATEF Standards recommend that programs encourage their students to begin to build their own individual tools sets prior to entry into the industry, there is no requirement to do so. **NOTE: Industry surveys indicate that most (90%) employers require that a candidate for employment provide his/her own basic hand tool set in order to be hired as an entry-level automobile technician.**
HAND TOOLS
(Contained in individual sets or the tool crib
in sufficient quantities to permit efficient instruction)

Air Blow Gun (meeting OSHA requirements)
Allen (Wrench or Socket) Set - Standard (.050" - 3/8")
Allen (Wrench or Socket) Set - Metric (2mm - 8mm, 10mm, 12mm)
Battery Post Cleaner
Battery Terminal Pliers
Battery Terminal Puller
Chisels:
 Cape 5/16"
 Cold 3/8", 3/4"
Chisel Holder
Claw Type Pickup Tool
Combination Wrenches:
 Standard (1/4" – 1 1/4")
 Metric (7mm - 24mm)
Crowfoot Wrench Set - Metric
Crowfoot Wrench Set - Standard
Ear Protection
Feeler Gauge (Blade Type):
 .002" - .040"
 .006mm - .070mm
Files:
 Coarse 6" and 12"
 Fine 6" and 12"
 Half Round 12"
 Round 6" and 12"
Flare Nut (tubing) Wrenches:
 3/8" - 3/4"
 10mm - 17mm
Flashlight
Fuse Puller
Fused Jumper Wire Set (with various adapters)
Hack Saw
Hammers:
 16 oz. Ball Peen
 Brass
 Dead Blow Plastic Mallet
 Plastic Tip
 Rubber Mallet
Inspection Mirror
Magnetic Pickup Tool
Pliers:
Combination 6"
Hose Clamp
Locking Jaw
Needle Nose 6"
Side Cutting
Slip Joint (Water Pump)
Pry Bars:
 Rolling Head
 Straight
Punches:
 Center
 Brass Drift
 Pin 1/8", 3/16", 1/4", 5/16"
 Taper 3/8", 1/2", 5/8"
Safety Glasses (meeting OSHA requirements)
Scraper:
 Carbon 1"
 Gasket 1"
Screwdriver - Blade Type:
 Stubby
 6", 9", 12"
 Offset
Screwdriver - Phillips:
 Stubby #1, #2
 6" #1, #2
 12" #3
 Offset #2
Screwdriver - Impact Driver Set
Screw Starter:
 Phillips
 Standard
Socket Set - 1/4" Drive:
 1/4" - 1/2" Standard Depth
 1/4" - 1/2" Deep
 6mm - 12mm Standard Depth
 6mm - 12mm Deep
 Flex/Universal Type
 3", 6" Extensions
 Ratchet
Socket Set - 3/8" Drive:
 5/16" - 3/4" Standard Depth (6 point)
 3/8" - 3/4" Deep (6 point)
 10mm - 19mm Standard Depth
 10mm - 19mm Deep
 3", 5", 10" Extensions
 Flexhead Ratchet
Ratchet
Spark Plug Sockets 5/8", 13/16"
Speed Handle
Universal Joint
Flexible Socket Set 3/8" - 3/4"
Flexible Socket Set 10mm - 19mm
Socket Set - 1/2" Drive:
 7/16" - 1 1/8" Standard Depth
 7/16" - 1 1/8" Deep
 10mm - 24mm Standard Depth
 10mm - 24mm Deep
 3", 6", 12" Extensions
 Flex Handle (Breaker Bar)
Ratchet
Spark Plug Feeler Gauge (Gap Tool)
Tape Measure – Standard and Metric
Test Light (12V)
Tire Pressure Gauge
Torque Wrench:
 3/8" Drive (10 - 250 lb. in.)
 3/8" Drive (5 - 75 lb. ft.)
 1/2" Drive (50 - 250 lb. ft.)
Torx® Set (screwdrivers and/or sockets):
 T-8 to T-60
Wire Brush
GENERAL LAB/SHOP EQUIPMENT

The tools and equipment on this list are used in general lab/shop work but are not generally considered to be individually owned hand tools. A well equipped, certified program should have all of these general tools and equipment readily available and in sufficient quantity to provide quality instruction.

Air Chisel Set (various bits)
Air Compressor and Hoses
Air Pressure Regulator
Air Ratchet (3/8” drive)
Automotive Stethoscope (electronic recommended)
Axle Stands (Jack Stands)
Axle Support Stands (Screw Jacks)
Battery Charger
Battery/ Starter/ Charging System Tester
Battery Conductance Tester (recommended)
Bearing Packer (hand operated)
Belt Tension Gauge
Bench or Pedestal Grinder
Compression Tester
Coolant/ Combustion Gas Detector (Recommended)
Coolant Tester
Cooling System Pressure Tester and Adapters
Creeper
Cylinder Leakage Tester
Dial Indicator with Flex Arm and Clamp Base
Digital Multimeter with various lead sets
Drain Pans
Drill - 3/8” variable speed, reversible
Drill - 1/2” variable speed, reversible
Electric Heat Gun
Engine Coolant Recovery Equipment or Recycler or Coolant Disposal Contract Service
Extension Cords
Face Shields
Fender Covers
Floor Jack (1½ Ton Minimum)
Graphing Multimeter (GMM)/Digital Storage Oscilloscope (DSO)
Hand Held Vacuum Pump
Hoist(s)
Hood Prop
Hydraulic Press with adapters
Impact Socket Sets - 3/8” Drive (Standard and Metric)
Impact Sockets - 1/2” Drive (7/16” - 1 1/8”)
Impact Sockets - 1/2" Drive (12mm – 24mm)
Impact Sockets – 1/2" Drive Deep (30 mm, 32 mm, 36mm)
Impact Wrench - 1/2" Drive
Impact Wrench - 3/8" Drive
Jumper Cables
Master Puller Set
Micrometer (Depth)
Micrometers - 0-1", 1-2", 2-3", 3-4", 4-5" (Outside Type)
Oil Can - Pump Type
Oil Filter Wrench
Oxy-Acetylene Torch Set
Parts Cleaning Tank and Gloves (non-solvent based cleanser suggested)
Remote Starter Switch
Scan Tool (OBDII) or Personal Computer (PC) with equivalent interface capability
 (CAN capability recommended)
Screw Extractor Set
Seat Covers
Snap Ring Pliers Set - external
Snap Ring Pliers Set - internal
Soldering Gun
Soldering Iron (Pencil Tip)
Spark Plug Boot Puller
Tap and Die Set - Standard
Tap and Die Set – Metric
Temperature Sensing Device
Thread Repair Insert Kit
Tire Inflator Chuck
Trouble/Work Lights (Fluorescent Preferred)
Tube Quick Disconnect Tool Set
Tubing Bender
Tubing Cutter/Flaring Set (Double-lap and ISO)
Twist Drill Set - 1/64" - 1/2"
Ultra Violet Leak Detection Device (Black Light)
Used Oil Receptacle with extension neck and funnel
Valve Core Removing Tool
Vernier Calipers
 0 - 6"
 0 - 125mm
Wheel Chocks
Workbenches with vises
SPECIALTY TOOLS AND EQUIPMENT

This section covers the tools and equipment a lab/shop should have for training in any given specialty area. This equipment is specialized and it must be available in the lab/shop or to the program. No specific type or brand names are identified because they will vary in each local situation.

SUSPENSION & STEERING

- Ball Joint Press and other Special Tools
- Brake Pedal Depressor
- Coil Spring Compressor Tool
- Constant Velocity Joint (CV) Service Tools: Boot Installation Tool Boot Clamp Pliers or Crimping Ring
- Hand Grease Gun
- Inner Tie Rod End Tool
- Pitman Arm Puller
- Power Steering Pump Pulley Special Tool Set (appropriate for units being taught)
- Shock Absorber Tools
- Strut Spring Compressor Tool
- Steering Column Special Tool Set (appropriate for teaching units being utilized)
- Tie Rod Puller
- Tire Mounting Machine (rim clamp type)
- Wheel Alignment Equipment-4 wheel (including alignment tools)
- Wheel Balancer - Electronic Type
- Wheel Weight Pliers

BRAKES

- Bearing Seal and Race Driver Set
- Brake Bleeder, Pressure or Vacuum
- Brake Disc Micrometer
- Brake Drum Micrometer and Calibration Equipment
- Brake Lathe (bench with disc and drum service attachments)
- Brake Lathe (on car)
- Brake Shoe Adjusting Gauge
- Brake Spring Remover/Installer
- Brake Spring Pliers
- Brake Spoon
- Piston Retraction Set
HEATING AND AIR CONDITIONING

A/C Compressor Clutch Service Tools
A/C Service Port Adapter Set
Dye Injector
Hygrometer
Leak Detector (SAE Standard)
Manifold Gauge Set or equivalent (HFC-134a)
Refrigerant Charging Station (HFC-134a) or equivalent
Refrigerant Identification Equipment
Refrigerant Recovery/Recycling Machine (HFC-134a)
Thermometer

ENGINE PERFORMANCE

Engine Analyzer (with ignition display capability)
Four or Five Gas Exhaust Analyzer (Five Gas Recommended)
Fuel Contaminant Test
Fuel Injection Pressure Gauge Sets with Adapters
Injector Pulse Tester
Leak Detector (Smoke or Nitrogen)
Logic Probe (suggested)
Oxygen Sensor Socket
Pinch-off Pliers
Sending Unit Socket(s)
Spark Plug Thread Tap
Spark Tester
Timing Advance Light
Vacuum/Pressure Gauge

AUTOMATIC TRANSMISSION/TRANSAXLE

Differential Setup Tools (appropriate for units being taught)
Hydraulic Pressure Gauge Set
Front Wheel Drive Engine Support Fixture
Transaxle Removal and Installation Equipment
Transmission Jack(s)
Transmission/Transaxle Flushing Equipment (recommended)
Transmission/Transaxle Holding Fixtures
Transmission/Transaxle Special Tool Sets (appropriate for units being utilized)
ELECTRICAL/ELECTRONIC SYSTEMS

- Battery Hydrometer
- Connector Pick Tool Set
- Door Panel Trim Tool(s)
- Headlight Aimer or Screen
- Wire and Terminal Repair Kit

MANUAL DRIVE TRAIN AND AXLES

- Clutch Alignment Set
- Clutch Pilot Bearing/Bushing Puller/Installer
- Differential Setup Tools (appropriate for units being taught)
- Front Wheel Drive Engine Support Fixture
- Transaxle Removal and Installation Equipment
- Special Tools for Transmissions/Transaxles (appropriate for units being taught)
- Transmission/Transaxle Holding Fixtures
- Transmission Jack(s)
- Universal Joint Tools

ENGINE REPAIR

- Ball (Small Hole) Gauges
- Cam Bearing Driver Set (suggested)
- Cylinder Deglazer
- Dial Bore Indicator
- Engine Stands/Benches
- Inside Micrometer Set:
 - 0 - 6"
 - 0 - 125mm
- Oil Pressure Gauge
- Outside Micrometer Set:
 - 0 - 6"
 - 0 - 125mm
- Portable Crane - 1/2 Ton
- Ring Compressor
- Ring Expander
- Ring Groove Cleaner
- Straight Edge
- Telescopic Gauge Set
- Torque Angle Gauge
- Transaxle Removal and Installation Equipment
- V-Blocks
- Valve Spring Compressor
Valve Spring Tester